/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file src/relay/op/contrib/ethosu/unary_elementwise.cc * \brief Property def of the Arm(R) Ethos(TM)-U unary elementwise ops. */ #include #include "common.h" namespace tvm { namespace relay { namespace op { namespace contrib { namespace ethosu { /*! \brief Attributes used by the NPU unary elementwise operator */ struct EthosuUnaryElementwiseAttrs : public tvm::AttrsNode { String operator_type; double ifm_scale; int ifm_zero_point; double ofm_scale; int ofm_zero_point; IndexExpr ofm_channels; String activation; int clip_min; int clip_max; String rounding_mode; String ifm_layout; String ofm_layout; TVM_DECLARE_ATTRS(EthosuUnaryElementwiseAttrs, "relay.attrs.EthosuUnaryElementwiseAttrs") { TVM_ATTR_FIELD(operator_type) .describe( "The type of the unary elementwise operator." "'ABS'" "'CLZ'"); TVM_ATTR_FIELD(ifm_scale).describe("The quantization scale for the Input Feature Map tensor."); TVM_ATTR_FIELD(ifm_zero_point) .describe("The quantization zero point for the Input Feature Map tensor."); TVM_ATTR_FIELD(ofm_scale).describe("The quantization scale for the Output Feature Map tensor."); TVM_ATTR_FIELD(ofm_zero_point) .describe("The quantization zero point for the Output Feature Map tensor."); TVM_ATTR_FIELD(ofm_channels).describe("The number of OFM channels."); TVM_ATTR_FIELD(activation) .describe( "The activation function to use. " "'NONE' - no activation function. " "'CLIP' - clip the output between clip_min and clip_max. " "'TANH' - tanh activation function. " "'SIGMOID' - sigmoid activation function. " "'LUT' - use a look-up table to perform the activation function.") .set_default("NONE"); TVM_ATTR_FIELD(clip_min) .describe("The minimum clipping value if activation = 'CLIP'.") .set_default(0); TVM_ATTR_FIELD(clip_max) .describe("The maximum clipping value if activation = 'CLIP'.") .set_default(0); TVM_ATTR_FIELD(rounding_mode) .describe( "The rounding mode to apply to the Output Feature Map tensor. " "'TFL' - Tensorflow Lite rounding scheme. " "'TRUNCATE' - Truncate towards zero." "'NATURAL' - Round to nearest value, with x.5 rounded up towards +infinity.") .set_default("TFL"); TVM_ATTR_FIELD(ifm_layout) .describe("The layout of the Input Feature Map tensor. Can be 'NHWC' or 'NHCWB16'.") .set_default("NHWC"); TVM_ATTR_FIELD(ofm_layout) .describe("The layout of the Output Feature Map tensor. Can be 'NHWC' or 'NHCWB16'.") .set_default("NHWC"); } }; TVM_REGISTER_NODE_TYPE(EthosuUnaryElementwiseAttrs); bool EthosuUnaryElementwiseRel(const Array& types, int num_inputs, const Attrs& attrs, const TypeReporter& reporter) { const int ifm_index = 0; const int result_index = 2; ICHECK_EQ(types.size(), result_index + 1); const auto* ifm = types[ifm_index].as(); if (ifm == nullptr) return false; const auto* param = attrs.as(); CHECK(param != nullptr) << "EthosuUnaryElementwiseAttrs cannot be nullptr."; String operator_type = param->operator_type; if (operator_type != "ABS" && operator_type != "CLZ") { reporter->GetDiagCtx().EmitFatal(Diagnostic::Error(reporter->GetSpan()) << "Invalid operator: expected ethosu_unary_elementwise 'ABS' " "or 'CLZ' for operator_type but was" << operator_type); return false; } auto ifm_dtype = ifm->dtype; if (ifm_dtype != DataType::UInt(8) && ifm_dtype != DataType::Int(8) && operator_type == "ABS") { reporter->GetDiagCtx().EmitFatal(Diagnostic::Error(reporter->GetSpan()) << "Invalid operator: expected ethosu_unary_elementwise " << operator_type << "input data type " << "of type(uint8) or type(int8) but was " << ifm_dtype); return false; } if (ifm_dtype != DataType::Int(32) && operator_type == "CLZ") { reporter->GetDiagCtx().EmitFatal( Diagnostic::Error(reporter->GetSpan()) << "Invalid operator: expected ethosu_unary_elementwise CLZ input data type " << "of type(int32) but was " << ifm_dtype); return false; } // Assign ofm type auto ofm_shape = EthosuInferElementwiseOutputShape(ifm->shape, param->ifm_layout, param->ofm_layout, param->ofm_channels); reporter->Assign(types[result_index], TensorType(ofm_shape, ifm_dtype)); return true; } Expr MakeEthosuUnaryElementwise(Expr ifm, Expr lut, String operator_type, double ifm_scale, int ifm_zero_point, double ofm_scale, int ofm_zero_point, IndexExpr ofm_channels, String activation, int clip_min, int clip_max, String rounding_mode, String ifm_layout, String ofm_layout) { auto attrs = make_object(); attrs->operator_type = std::move(operator_type); attrs->ifm_scale = ifm_scale; attrs->ifm_zero_point = ifm_zero_point; attrs->ofm_scale = ofm_scale; attrs->ofm_zero_point = ofm_zero_point; attrs->ofm_channels = std::move(ofm_channels); attrs->activation = std::move(activation); attrs->clip_min = clip_min; attrs->clip_max = clip_max; attrs->rounding_mode = std::move(rounding_mode); attrs->ifm_layout = std::move(ifm_layout); attrs->ofm_layout = std::move(ofm_layout); static const Op& op = Op::Get("contrib.ethosu.unary_elementwise"); return Call(op, {ifm, lut}, Attrs(attrs), {}); } TVM_REGISTER_GLOBAL("relay.op._make.ethosu_unary_elementwise") .set_body_typed(MakeEthosuUnaryElementwise); RELAY_REGISTER_OP("contrib.ethosu.unary_elementwise") .describe(R"code(Quantized unary elementwise operator for Arm(R) Ethos(TM)-U NPUs. This Relay operator corresponds to the hardware-implemented quantized unary elementwise operation found on NPUs. It accepts either NHWC or NHCWB16 format for the inputs data (input feature maps, or IFMs). Reference: https://developer.arm.com/documentation/102420/0200/ - **ifm**: NHWC - (1, ifm_height, ifm_width, ifm_channels) NHCWB16 - (1, ifm_height, ifm_channels // 16, ifm_width, 16) - **ofm**: (1, ofm_height, ofm_width, ofm_channels) )code" TVM_ADD_FILELINE) .set_attrs_type() .set_num_inputs(2) .add_argument("ifm", "Tensor", "The Input Feature Map tensor (IFM).") .add_argument("lut", "Tensor", "The look-up table values to use if activation = 'LUT'") .set_support_level(11) .add_type_rel("EthosuUnaryElementwise", EthosuUnaryElementwiseRel); } // namespace ethosu } // namespace contrib } // namespace op } // namespace relay } // namespace tvm