/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file grid_sample.cc * \brief affine_grid and grid_sample operator */ #include #include #include #include "../op_common.h" namespace tvm { namespace relay { // relay.image.affine_grid TVM_REGISTER_NODE_TYPE(AffineGridAttrs); bool AffineGridRel(const Array& types, int num_inputs, const Attrs& attrs, const TypeReporter& reporter) { ICHECK_EQ(types.size(), 2); const auto* data = types[0].as(); if (data == nullptr) return false; auto batch_size = data->shape[0]; const AffineGridAttrs* param = attrs.as(); ICHECK(param != nullptr); Array oshape; ICHECK(data->shape.size() == 3U && reporter->AssertEQ(data->shape[1], 2) && reporter->AssertEQ(data->shape[2], 3)) << "data should be an" "affine matrix with shape [batch_size, 2, 3]"; ICHECK(param->target_shape.defined() && param->target_shape.size() == 2) << "target_shape should be 2D"; oshape.push_back(batch_size); oshape.push_back(2); oshape.push_back(param->target_shape[0]); oshape.push_back(param->target_shape[1]); // assign output type reporter->Assign(types[1], TensorType(oshape, data->dtype)); return true; } // Positional relay function to create affine_grid operator // used by frontend FFI. Expr MakeAffineGrid(Expr data, Array target_shape) { auto attrs = make_object(); attrs->target_shape = std::move(target_shape); static const Op& op = Op::Get("image.affine_grid"); return Call(op, {data}, Attrs(attrs), {}); } TVM_REGISTER_GLOBAL("relay.op.image._make.affine_grid").set_body_typed(MakeAffineGrid); RELAY_REGISTER_OP("image.affine_grid") .describe(R"code(affine_grid operator that generates 2D sampling grid. This operation is described in https://arxiv.org/pdf/1506.02025.pdf. It generates a uniform sampling grid within the target shape and normalizes it to [-1, 1]. The provided affine transformation is then applied on the sampling grid. - **data**: data is 3D array of shape [batch, 2, 3], which defines an affine transformation. - **out**: out is 4D array of shape [batch, 2, height, width], where each vector :math:`out[b, :, h, w]` represents the coordinate :math:`(x, y)` )code" TVM_ADD_FILELINE) .set_attrs_type() .set_num_inputs(1) .add_argument("data", "Tensor", "The affine matrix.") .set_support_level(5) .add_type_rel("AffineGrid", AffineGridRel) .set_attr("TOpPattern", kInjective); // relay.image.grid_sample TVM_REGISTER_NODE_TYPE(GridSampleAttrs); bool GridSampleRel(const Array& types, int num_inputs, const Attrs& attrs, const TypeReporter& reporter) { ICHECK_EQ(types.size(), 3); const auto* data = types[0].as(); const auto* grid = types[1].as(); if (!data || !grid) return false; const auto* param = attrs.as(); ICHECK(param); static const Layout kNCHW("NCHW"); const Layout in_layout(param->layout); auto layout_converter = tir::BijectiveLayout(in_layout, kNCHW); auto oshape = layout_converter.ForwardShape(data->shape); oshape.Set(2, grid->shape[2]); oshape.Set(3, grid->shape[3]); // assign output type reporter->Assign(types[2], TensorType(layout_converter.BackwardShape(oshape), data->dtype)); return true; } // Positional relay function to create affine_grid operator // used by frontend FFI. Expr MakeGridSample(Expr data, Expr grid, String method, String layout) { auto attrs = make_object(); attrs->method = std::move(method); attrs->layout = std::move(layout); static const Op& op = Op::Get("image.grid_sample"); return Call(op, {data, grid}, Attrs(attrs), {}); } TVM_REGISTER_GLOBAL("relay.op.image._make.grid_sample").set_body_typed(MakeGridSample); RELAY_REGISTER_OP("image.grid_sample") .describe(R"code(Applies grid sampling to input feature map. Given :math:`data` and :math:`grid`, then the output is computed by .. math:: x_{src} = grid[batch, 0, y_{dst}, x_{dst}] \\ y_{src} = grid[batch, 1, y_{dst}, x_{dst}] \\ output[batch, channel, y_{dst}, x_{dst}] = G(data[batch, channel, y_{src}, x_{src}) :math:`x_{dst}`, :math:`y_{dst}` enumerate all spatial locations in :math:`output`, and :math:`G()` denotes the interpolation function. The out-boundary points will be padded with zeros. The shape of the output will be (data.shape[0], data.shape[1], grid.shape[2], grid.shape[3]). The operator assumes that :math:`data` has 'NCHW' layout and :math:`grid` has been normalized to [-1, 1]. grid_sample often cooperates with affine_grid which generates sampling grids for grid_sample. - **data**: data is 4D array of shape (batch_size, channels, in_height, in_width) for NCHW (batch_size, in_height, in_width, channels) for NHWC - **grid**: grid is 4D array of shape [batch, 2, out_height, out_width], where each vector :math:`out[b, :, h, w]` represents the coordinate :math:`(x, y)` - **out**: out is 4D array of shape (batch, in_channel, out_height, out_width) for NCHW (batch_size, in_height, in_width, channels) for NHWC )code" TVM_ADD_FILELINE) .set_num_inputs(2) .set_attrs_type() .add_argument("data", "Tensor", "The input tensor.") .add_argument("grid", "Tensor", "The grid tensor.") .set_support_level(5) .add_type_rel("GridSample", GridSampleRel) .set_attr("TOpPattern", kInjective); } // namespace relay } // namespace tvm