/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /*! * \file src/relay/qnn/op/subtract.cc * \brief QNN subtract operator. */ #include #include #include "op_common.h" namespace tvm { namespace relay { namespace qnn { /* * \brief Canonicalizes the QNN subtract op. * \param attrs The empty attribute. * \param new_args The new mutated args to the call node. * \param arg_types The types of input and output. * \return The sequence of Relay ops for add op. */ Expr QnnSubtractCanonicalize(const Attrs& attrs, const Array& new_args, const Array& arg_types) { // Get the args. QnnBinaryOpArguments args(new_args); // Get the input dtype and shape. QnnBinaryOpTensorType input_type(arg_types, 0); // TODO(shoubhik) - The lowering can be further optimized. Instead of inserting requantize in // the start, we can insert requantize at the end if both input tensors have same qnn params. In // that case, we can first subtract the tensors, add the zero point, and requantize at the end. // This can be done in future. // Since the input qnn params can be different than output qnn params, we first requantize the // input tensors to the output qnn params. Then we call relay.subtract on the requantized inputs. // This subtraction results in extra subtraction of the output zero point. We further add // the zero point. The whole process can be represented using following equations // // scale_c * (Q_c - zp_c) = scale_a * (Q_a - zp_a) - scale_b * (Q_b - zp_b) // // After requantizing Q_a and Q_b, equation becomes, // scale_c * (Q_c - zp_c) = scale_c * (Q_a' - zp_c) - scale_c * (Q_b' - zp_c) // scale_c * (Q_c - zp_c) = scale_c * (Q_a' - Q_b') // // Comparing the LHS and RHS, it results in // Q_c = Q_a' - Q_b' + zp_c // The subtract op is done in int32 precision. // Requantize LHS if necessary. Computes Q_a' auto requantized_lhs = RequantizeOrUpcast(args.lhs, args.lhs_scale, args.lhs_zero_point, args.output_scale, args.output_zero_point, input_type.shape); // Requantize RHS if necessary. Computes Q_b' auto requantized_rhs = RequantizeOrUpcast(args.rhs, args.rhs_scale, args.rhs_zero_point, args.output_scale, args.output_zero_point, input_type.shape); // Computes Q_a' - Q_b' auto output = Subtract(requantized_lhs, requantized_rhs); // Add zero point. Computes (Q_a' - Q_b') + zp_c auto zero_scalar = MakeConstantScalar(DataType::Int(32), 0); if (!IsEqualScalar(args.output_zero_point, zero_scalar)) { output = Add(output, args.output_zero_point); } // Go back to lower precision. return ConvertDtype(output, input_type.dtype); } // QNN Subtraction operator. QNN_REGISTER_BINARY_OP("subtract") .describe("Elementwise subtract with with broadcasting for quantized tensors.") .set_support_level(11) .set_attr("FTVMQnnCanonicalize", QnnSubtractCanonicalize); } // namespace qnn } // namespace relay } // namespace tvm