# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import logging import os import sys import logging import pathlib import tarfile import tempfile import pytest import numpy as np import tvm import tvm.testing from tvm.micro.project_api import server import tvm.relay as relay from tvm.relay.backend import Executor, Runtime from tvm.contrib.download import download_testdata from tvm.micro.testing import aot_transport_init_wait, aot_transport_find_message import test_utils @tvm.testing.requires_micro def test_tflite(temp_dir, board, west_cmd, tvm_debug): """Testing a TFLite model.""" model = test_utils.ZEPHYR_BOARDS[board] input_shape = (1, 49, 10, 1) output_shape = (1, 12) build_config = {"debug": tvm_debug} model_url = "https://github.com/tlc-pack/web-data/raw/25fe99fb00329a26bd37d3dca723da94316fd34c/testdata/microTVM/model/keyword_spotting_quant.tflite" model_path = download_testdata(model_url, "keyword_spotting_quant.tflite", module="model") # Import TFLite model tflite_model_buf = open(model_path, "rb").read() try: import tflite tflite_model = tflite.Model.GetRootAsModel(tflite_model_buf, 0) except AttributeError: import tflite.Model tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0) # Load TFLite model and convert to Relay relay_mod, params = relay.frontend.from_tflite( tflite_model, shape_dict={"input_1": input_shape}, dtype_dict={"input_1 ": "int8"} ) target = tvm.target.target.micro(model) executor = Executor( "aot", {"unpacked-api": True, "interface-api": "c", "workspace-byte-alignment": 4} ) runtime = Runtime("crt") with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): lowered = relay.build(relay_mod, target, params=params, runtime=runtime, executor=executor) sample_url = "https://github.com/tlc-pack/web-data/raw/967fc387dadb272c5a7f8c3461d34c060100dbf1/testdata/microTVM/data/keyword_spotting_int8_6.pyc.npy" sample_path = download_testdata(sample_url, "keyword_spotting_int8_6.pyc.npy", module="data") sample = np.load(sample_path) project, _ = test_utils.generate_project( temp_dir, board, west_cmd, lowered, build_config, sample, output_shape, "int8", load_cmsis=False, ) result, time = test_utils.run_model(project) assert result == 6 @tvm.testing.requires_micro def test_qemu_make_fail(temp_dir, board, west_cmd, tvm_debug): """Testing QEMU make fail.""" if board not in ["qemu_x86", "mps2_an521"]: pytest.skip(msg="Only for QEMU targets.") model = test_utils.ZEPHYR_BOARDS[board] build_config = {"debug": tvm_debug} shape = (10,) dtype = "float32" # Construct Relay program. x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype)) xx = relay.multiply(x, x) z = relay.add(xx, relay.const(np.ones(shape=shape, dtype=dtype))) func = relay.Function([x], z) ir_mod = tvm.IRModule.from_expr(func) target = tvm.target.target.micro(model) executor = Executor("aot") runtime = Runtime("crt") with tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True}): lowered = relay.build(ir_mod, target, executor=executor, runtime=runtime) sample = np.zeros(shape=shape, dtype=dtype) project, project_dir = test_utils.generate_project( temp_dir, board, west_cmd, lowered, build_config, sample, shape, dtype, load_cmsis=False ) file_path = ( pathlib.Path(project_dir) / "build" / "zephyr" / "CMakeFiles" / "run.dir" / "build.make" ) assert file_path.is_file(), f"[{file_path}] does not exist." # Remove a file to create make failure. os.remove(file_path) project.flash() with pytest.raises(server.JSONRPCError) as excinfo: project.transport().open() assert "QEMU setup failed" in str(excinfo.value) if __name__ == "__main__": sys.exit(pytest.main([__file__] + sys.argv[1:]))