# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import numpy as np from tvm import rpc from tvm.contrib import utils, xcode, coreml_runtime import pytest import os proxy_host = os.environ.get("TVM_IOS_RPC_PROXY_HOST", "127.0.0.1") proxy_port = os.environ.get("TVM_IOS_RPC_PROXY_PORT", 9090) destination = os.environ.get("TVM_IOS_RPC_DESTINATION", "") key = "iphone" @pytest.mark.skip("skip because coremltools is not available in CI") def test_coreml_runtime(): import coremltools from coremltools.models.neural_network import NeuralNetworkBuilder def create_coreml_model(): shape = (2,) alpha = 2 inputs = [ ("input0", coremltools.models.datatypes.Array(*shape)), ("input1", coremltools.models.datatypes.Array(*shape)), ] outputs = [ ("output0", coremltools.models.datatypes.Array(*shape)), ("output1", coremltools.models.datatypes.Array(*shape)), ] builder = NeuralNetworkBuilder(inputs, outputs) builder.add_elementwise( name="Add", input_names=["input0", "input1"], output_name="output0", mode="ADD" ) builder.add_elementwise( name="Mul", alpha=alpha, input_names=["input0"], output_name="output1", mode="MULTIPLY" ) return coremltools.models.MLModel(builder.spec) def verify(coreml_model, model_path, dev): coreml_model = create_coreml_model() out_spec = coreml_model.output_description._fd_spec out_names = [spec.name for spec in out_spec] # inference via coremltools inputs = {} for in_spec in coreml_model.input_description._fd_spec: name = in_spec.name shape = in_spec.type.multiArrayType.shape inputs[name] = np.random.random_sample(shape) coreml_outputs = [coreml_model.predict(inputs)[name] for name in out_names] # inference via tvm coreml runtime runtime = coreml_runtime.create("main", model_path, dev) for name in inputs: runtime.set_input(name, tvm.nd.array(inputs[name], dev)) runtime.invoke() tvm_outputs = [runtime.get_output(i).numpy() for i in range(runtime.get_num_outputs())] for c_out, t_out in zip(coreml_outputs, tvm_outputs): np.testing.assert_almost_equal(c_out, t_out, 3) def check_remote(coreml_model): temp = utils.tempdir() compiled_model = xcode.compile_coreml(coreml_model, out_dir=temp.temp_dir) xcode.popen_test_rpc( proxy_host, proxy_port, key, destination=destination, libs=[compiled_model] ) compiled_model = os.path.basename(compiled_model) remote = rpc.connect(proxy_host, proxy_port, key=key) dev = remote.cpu(0) verify(coreml_model, compiled_model, dev) def check_local(coreml_model): temp = utils.tempdir() compiled_model = xcode.compile_coreml(coreml_model, out_dir=temp.temp_dir) dev = tvm.cpu(0) verify(coreml_model, compiled_model, dev) coreml_model = create_coreml_model() check_remote(coreml_model) check_local(coreml_model) if __name__ == "__main__": test_coreml_runtime()