# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Arm(R) Ethos(TM)-N integration fully connected tests""" import numpy as np import tvm from tvm import relay from tvm.testing import requires_ethosn from . import infrastructure as tei def _get_model( shape, weight_shape, input_zp, input_sc, kernel_zp, kernel_sc, output_zp, output_sc, dtype ): """Return a model an any parameters it may have""" a = relay.var("a", shape=shape, dtype=dtype) w = tvm.nd.array(np.ones(weight_shape, dtype)) weights = relay.const(w, dtype) fc = relay.qnn.op.dense( a, weights, input_zero_point=relay.const(input_zp, "int32"), kernel_zero_point=relay.const(kernel_zp, "int32"), input_scale=relay.const(input_sc, "float32"), kernel_scale=relay.const(kernel_sc, "float32"), units=weight_shape[0], out_dtype="int32", ) b = tvm.nd.array(np.random.randint(0, high=255, size=(shape[0],), dtype="int32")) biasc = relay.const(b, "int32") bias = relay.nn.bias_add(fc, biasc, axis=0) req = relay.qnn.op.requantize( bias, relay.const(input_sc * kernel_sc, "float32"), # input zero scale relay.const(input_zp * kernel_zp, "int32"), # input zero point relay.const(output_sc, "float32"), # output zero scale relay.const(output_zp, "int32"), # output zero point out_dtype="uint8", ) params = {"w": w, "b": b} return req, params @requires_ethosn def test_fullyconnected(): trials = [ ((1, 1024), 71, 0.580, 79, 1.498), ((1, 4096), 166, 1.724, 117, 0.180), ((1, 16384), 101, 1.372, 21, 1.346), ] np.random.seed(0) for shape, input_zp, input_sc, kernel_zp, kernel_sc in trials: inputs = { "a": tvm.nd.array(np.random.randint(0, high=255, size=shape, dtype="uint8")), } outputs = [] output_zp, output_sc = tei.get_conv2d_qnn_params( input_zp, input_sc, kernel_zp, kernel_sc, shape[0], shape[1], 1 ) for npu in [False, True]: model, params = _get_model( shape, shape, input_zp, input_sc, # input zp, sc kernel_zp, kernel_sc, # kernel output_zp, output_sc, # output "uint8", ) mod = tei.make_module(model, params) outputs.append(tei.build_and_run(mod, inputs, 1, params, npu=npu)) tei.verify(outputs, 1) @requires_ethosn def test_fullyconnected_failure(): lb = "2.328306e-10" if tei.get_ethosn_api_version() > 2102 else "0" trials = [ ( (1, 64), (1, 64), 0, 1, 0, 1, 0, 1, "uint8", f"Overall scale (of the input * weights / output) should be in the range [{lb}, 1)", ), ( (1, 1, 1, 64), (1, 64), 0, 1, 0, 1, 0, 1, "uint8", "Weights tensor must have I dimension equal to the number of channels of the input tensor.;", ), ((1024, 64), (1, 64), 0, 1, 0, 1, 0, 1, "uint8", "batch size=1024, batch size must = 1;"), ] np.random.seed(0) for ( shape, weight_shape, input_zp, input_sc, kernel_zp, kernel_sc, output_zp, output_sc, dtype, err_msg, ) in trials: inputs = { "a": tvm.nd.array(np.random.randint(0, high=255, size=shape, dtype=dtype)), } model, params = _get_model( shape, weight_shape, input_zp, input_sc, kernel_zp, kernel_sc, output_zp, output_sc, dtype, ) model = tei.make_ethosn_composite(model, "ethos-n.qnn_fc") mod = tei.make_ethosn_partition(model) tei.test_error(mod, {}, err_msg)