# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Arm(R) Ethos(TM)-N integration reshape tests""" import tvm from tvm import relay from tvm.testing import requires_ethosn from tvm.relay.op.contrib import get_pattern_table from . import infrastructure as tei import numpy as np def _get_model(input_shape, output_shape, dtype): """Return a model and any parameters it may have""" a = relay.var("a", shape=input_shape, dtype=dtype) conv, params = tei.get_conv2d(a, input_shape) req = relay.reshape(conv, output_shape) return req, params @requires_ethosn def test_reshape(): trials = [ ((1, 15, 4, 1), (1, 60)), ((1, 15, 4, 1), (1, 30, 2)), ((1, 15, 4, 1), (1, 4, 15, 1)), ((1, 15, 4, 1), (1, 12, 5, 1)), ((1, 15, 4, 1), (1, -1, 2, 1)), ] np.random.seed(0) for input_shape, output_shape in trials: inputs = { "a": tvm.nd.array(np.random.randint(0, high=255, size=input_shape, dtype="uint8")) } outputs = [] for npu in [False, True]: model, params = _get_model(input_shape, output_shape, "uint8") mod = tei.make_module(model, params) outputs.append(tei.build_and_run(mod, inputs, 1, params, npu=npu)) tei.verify(outputs, 1) @requires_ethosn def test_reshape_failure(): trials = [ ( (1, 15, 4, 1), (1, 15, -2), "uint8", "reshape dimension=-2, reshape dimension must be >= -1", ), ] np.random.seed(0) for input_shape, output_shape, dtype, err_msg in trials: model, params = _get_model(input_shape, output_shape, dtype) mod = tei.make_module(model, params) pattern = get_pattern_table("ethos-n") mod = tei.make_module(model, params) mod = relay.transform.MergeComposite(pattern)(mod) mod = tei.make_ethosn_partition(mod["main"].body) tei.test_error(mod, {}, err_msg)