# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Arm(R) Ethos(TM)-N integration sigmoid tests""" import tvm from tvm import relay from tvm.testing import requires_ethosn from . import infrastructure as tei import numpy as np def _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype): a = relay.var("a", shape=shape, dtype=dtype) dequantize = relay.qnn.op.dequantize( a, input_scale=relay.const(input_sc, "float32"), input_zero_point=relay.const(input_zp, "int32"), ) sigmoid = relay.sigmoid(dequantize) model = relay.qnn.op.quantize( sigmoid, output_scale=relay.const(output_sc, "float32"), output_zero_point=relay.const(output_zp, "int32"), out_dtype=dtype, ) return model @requires_ethosn def test_sigmoid(): trials = [ (1, 16, 16, 16), (1, 8, 8), ] np.random.seed(0) for shape in trials: inputs = { "a": tvm.nd.array(np.random.randint(0, high=255, size=shape, dtype="uint8")), } outputs = [] for npu in [False, True]: model = _get_model(shape, 64, 0.02, 0, 1 / 256, "uint8") mod = tei.make_module(model, []) outputs.append(tei.build_and_run(mod, inputs, 1, {}, npu=npu)) tei.verify(outputs, 1) @requires_ethosn def test_sigmoid_failure(): trials = [ ((2, 4, 4, 4), 64, 0.2, 0, 1 / 256, "uint8", "batch size=2, batch size must = 1"), ( (1, 4, 4, 4), 64, 0.2, 0, 1 / 256, "int8", "dtype='int8', dtype must be either uint8 or int32", ), ( (1, 4, 4, 4), 64, 0.2, 0, 1, "uint8", "output quantization params=(0, 1), must = (0, 1/256)", ), ] for shape, input_zp, input_sc, output_zp, output_sc, dtype, err_msg in trials: model = _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype) model = tei.make_ethosn_composite(model, "ethos-n.qnn_sigmoid") mod = tei.make_ethosn_partition(model) tei.test_error(mod, {}, err_msg)