# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np import scipy.signal from tvm.topi.nn.utils import get_pad_tuple from tvm.contrib import nnpack import pytest @tvm.testing.requires_llvm def test_fully_connected_inference(): n = 1024 l = 128 m = 235 bias = te.var("bias", dtype="float32") A = te.placeholder((l,), name="A") B = te.placeholder((m, l), name="B") C = nnpack.fully_connected_inference(A, B) D = te.compute(C.shape, lambda i: C[i] + bias, name="D") s = te.create_schedule(D.op) def verify(target="llvm"): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) f = tvm.build(s, [A, B, D, bias], target) a = tvm.nd.array(np.random.uniform(size=(l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(m, l)).astype(B.dtype), dev) d = tvm.nd.array(np.zeros((m,), dtype=D.dtype), dev) bb = 10.0 f(a, b, d, bb) tvm.testing.assert_allclose(d.numpy(), np.dot(a.numpy(), b.numpy().T) + bb, rtol=1e-5) verify() def np_conv(na, nw, padding, stride=1): batch, in_channel, in_height, in_width = na.shape _, num_filter, kernel_h, kernel_w = nw.shape if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel_h, kernel_w)) pad_h = pad_top + pad_bottom pad_w = pad_left + pad_right out_channel = num_filter out_height = (in_height - kernel_h + pad_h) // stride_h + 1 out_width = (in_width - kernel_w + pad_w) // stride_w + 1 nb = np.zeros((batch, out_channel, out_height, out_width)) for n in range(batch): for f in range(out_channel): for c in range(in_channel): if pad_h > 0 or pad_w > 0: apad = np.zeros((in_height + pad_h, in_width + pad_w)) apad[pad_top : pad_top + in_height, pad_left : pad_left + in_width] = na[n, c] else: apad = na[n, c] out = scipy.signal.convolve2d(apad, np.rot90(np.rot90(nw[f, c])), mode="valid") nb[n, f] += out[::stride, ::stride] return nb @tvm.testing.requires_llvm def test_convolution_inference(): BATCH = 8 IH = 48 IW = 48 IC = 16 OC = 16 K = 3 PAD = 1 STRIDE = 1 OH = (IH + 2 * PAD - K) + 1 OW = (IW + 2 * PAD - K) + 1 dshape = (BATCH, IC, IH, IW) kshape = (OC, IC, K, K) bshape = (OC,) oshape = (BATCH, OC, OH, OW) data = te.placeholder(dshape, name="data") kernel = te.placeholder(kshape, name="kernel") bias = te.placeholder(bshape, name="bias") def verify(target="llvm", algorithm=nnpack.ConvolutionAlgorithm.AUTO, with_bias=True): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) output = nnpack.convolution_inference( data, kernel, bias if with_bias else None, [PAD, PAD, PAD, PAD], [STRIDE, STRIDE], algorithm=algorithm, ) s = te.create_schedule(output.op) f = tvm.build(s, [data, kernel, bias, output], target) na = np.random.uniform(size=dshape).astype(data.dtype) nb = np.random.uniform(size=kshape).astype(kernel.dtype) nc = np.zeros(bshape, dtype=bias.dtype) ta = tvm.nd.array(na, dev) tb = tvm.nd.array(nb, dev) tc = tvm.nd.array(nc, dev) td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), dev) f(ta, tb, tc, td) nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape( 1, bshape[0], 1, 1 ) tvm.testing.assert_allclose(td.numpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5) for algorithm in [ nnpack.ConvolutionAlgorithm.AUTO, nnpack.ConvolutionAlgorithm.FFT_8x8, nnpack.ConvolutionAlgorithm.FFT_16x16, nnpack.ConvolutionAlgorithm.WT_8x8, nnpack.ConvolutionAlgorithm.IMPLICIT_GEMM, nnpack.ConvolutionAlgorithm.WT_8x8_FP16, ]: for with_bias in [True, False]: verify(algorithm=algorithm, with_bias=with_bias) @tvm.testing.requires_llvm def test_convolution_inference_without_weight_transform(): BATCH = 6 IH = 48 IW = 48 IC = 16 OC = 16 K = 3 PAD = 1 STRIDE = 1 OH = (IH + 2 * PAD - K) + 1 OW = (IW + 2 * PAD - K) + 1 dshape = (BATCH, IC, IH, IW) kshape = (OC, IC, K, K) bshape = (OC,) oshape = (BATCH, OC, OH, OW) data = te.placeholder(dshape, name="data") kernel = te.placeholder(kshape, name="kernel") bias = te.placeholder(bshape, name="bias") def verify(target="llvm", algorithm=nnpack.ConvolutionAlgorithm.AUTO, with_bias=True): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) transformed_kernel = nnpack.convolution_inference_weight_transform( kernel, algorithm=algorithm ) output = nnpack.convolution_inference_without_weight_transform( data, transformed_kernel, bias if with_bias else None, [PAD, PAD, PAD, PAD], [STRIDE, STRIDE], algorithm=algorithm, ) s = te.create_schedule(output.op) f = tvm.build(s, [data, kernel, bias, output], target) na = np.random.uniform(size=dshape).astype(data.dtype) nb = np.random.uniform(size=kshape).astype(kernel.dtype) nc = ( np.random.uniform(size=bshape).astype(bias.dtype) if with_bias else np.zeros(bshape, dtype=bias.dtype) ) ta = tvm.nd.array(na, dev) tb = tvm.nd.array(nb, dev) tc = tvm.nd.array(nc, dev) td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), dev) f(ta, tb, tc, td) nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape( 1, bshape[0], 1, 1 ) tvm.testing.assert_allclose(td.numpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5) for algorithm in [nnpack.ConvolutionAlgorithm.WT_8x8]: for with_bias in [True, False]: verify(algorithm=algorithm, with_bias=with_bias) if __name__ == "__main__": pytest.main()