# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import te import numpy as np from tvm import rpc from tvm.contrib import utils, tflite_runtime def _create_tflite_model(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return root = tf.Module() root.const = tf.constant([1.0, 2.0], tf.float32) root.f = tf.function(lambda x: root.const * x) input_signature = tf.TensorSpec( shape=[ 2, ], dtype=tf.float32, ) concrete_func = root.f.get_concrete_function(input_signature) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) tflite_model = converter.convert() return tflite_model @pytest.mark.skip("skip because accessing output tensor is flakey") def test_local(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return tflite_fname = "model.tflite" tflite_model = _create_tflite_model() temp = utils.tempdir() tflite_model_path = temp.relpath(tflite_fname) open(tflite_model_path, "wb").write(tflite_model) # inference via tflite interpreter python apis interpreter = tf.lite.Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]["shape"] tflite_input = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]["index"], tflite_input) interpreter.invoke() tflite_output = interpreter.get_tensor(output_details[0]["index"]) # inference via tvm tflite runtime with open(tflite_model_path, "rb") as model_fin: runtime = tflite_runtime.create(model_fin.read(), tvm.cpu(0)) runtime.set_input(0, tvm.nd.array(tflite_input)) runtime.invoke() out = runtime.get_output(0) np.testing.assert_equal(out.numpy(), tflite_output) def test_remote(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return tflite_fname = "model.tflite" tflite_model = _create_tflite_model() temp = utils.tempdir() tflite_model_path = temp.relpath(tflite_fname) open(tflite_model_path, "wb").write(tflite_model) # inference via tflite interpreter python apis interpreter = tf.lite.Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]["shape"] tflite_input = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]["index"], tflite_input) interpreter.invoke() tflite_output = interpreter.get_tensor(output_details[0]["index"]) # inference via remote tvm tflite runtime def check_remote(server): remote = rpc.connect(server.host, server.port) a = remote.upload(tflite_model_path) with open(tflite_model_path, "rb") as model_fin: runtime = tflite_runtime.create(model_fin.read(), remote.cpu(0)) runtime.set_input(0, tvm.nd.array(tflite_input, remote.cpu(0))) runtime.invoke() out = runtime.get_output(0) np.testing.assert_equal(out.numpy(), tflite_output) check_remote(rpc.Server("127.0.0.1")) if __name__ == "__main__": test_local() test_remote()