# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ a simple multilayer perceptron """ import mxnet as mx def get_symbol(num_classes=10, **kwargs): data = mx.symbol.Variable("data") data = mx.sym.Flatten(data=data) try: fc1 = mx.symbol.FullyConnected(data=data, name="fc1", num_hidden=128, flatten=False) act1 = mx.symbol.Activation(data=fc1, name="relu1", act_type="relu") fc2 = mx.symbol.FullyConnected(data=act1, name="fc2", num_hidden=64, flatten=False) act2 = mx.symbol.Activation(data=fc2, name="relu2", act_type="relu") fc3 = mx.symbol.FullyConnected(data=act2, name="fc3", num_hidden=num_classes, flatten=False) mlp = mx.symbol.softmax(data=fc3, name="softmax") except: fc1 = mx.symbol.FullyConnected(data=data, name="fc1", num_hidden=128) act1 = mx.symbol.Activation(data=fc1, name="relu1", act_type="relu") fc2 = mx.symbol.FullyConnected(data=act1, name="fc2", num_hidden=64) act2 = mx.symbol.Activation(data=fc2, name="relu2", act_type="relu") fc3 = mx.symbol.FullyConnected(data=act2, name="fc3", num_hidden=num_classes) mlp = mx.symbol.softmax(data=fc3, name="softmax") return mlp