# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import operator import random import numpy as np import pytest import tvm import tvm.testing from tvm import relay, te from tvm.contrib import graph_executor import model_zoo import mxnet as mx from mxnet import gluon from mxnet.gluon.model_zoo import vision def verify_mxnet_frontend_impl( mx_symbol, data_shape=(1, 3, 224, 224), out_shape=(1, 1000), gluon_impl=False, name=None, dtype="float32", ): """Use name different from test to avoid pytest picking it up""" if gluon_impl: def get_gluon_output(name, x): net = vision.get_model(name) net.collect_params().initialize(mx.init.Xavier()) net_sym = gluon.nn.SymbolBlock( outputs=net(mx.sym.var("data")), inputs=mx.sym.var("data"), params=net.collect_params(), ) out = net_sym(mx.nd.array(x.astype(dtype))).asnumpy() return out, net_sym else: def get_mxnet_output(symbol, x, dtype="float32"): from collections import namedtuple Batch = namedtuple("Batch", ["data"]) mod = mx.mod.Module(symbol, label_names=None) mod.bind(data_shapes=[("data", x.shape)], for_training=False) mod.init_params() mod.forward(Batch([mx.nd.array(x.astype(dtype))])) out = mod.get_outputs()[0].asnumpy() args, auxs = mod.get_params() return out, args, auxs def get_tvm_output(symbol, x, args, auxs, target, dev, dtype="float32"): shape_dict = {"data": x.shape} if gluon_impl: mod, params = relay.frontend.from_mxnet(symbol, shape_dict) else: mod, params = relay.frontend.from_mxnet( symbol, shape_dict, arg_params=args, aux_params=auxs ) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](dev)) # set inputs m.set_input("data", tvm.nd.array(x.astype(dtype))) m.run() # get outputs out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) return out.numpy() # random input x = np.random.uniform(size=data_shape) if gluon_impl: gluon_out, gluon_sym = get_gluon_output(name, x) for target, dev in tvm.testing.enabled_targets(): tvm_out = get_tvm_output(gluon_sym, x, None, None, target, dev, dtype) tvm.testing.assert_allclose(gluon_out, tvm_out, rtol=1e-5, atol=1e-5) else: mx_out, args, auxs = get_mxnet_output(mx_symbol, x, dtype) assert "data" not in args for target, dev in tvm.testing.enabled_targets(): tvm_out = get_tvm_output(mx_symbol, x, args, auxs, target, dev, dtype) tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_forward_mlp(): mlp = model_zoo.mx_mlp() verify_mxnet_frontend_impl(mlp, data_shape=(1, 1, 28, 28), out_shape=(1, 10)) @tvm.testing.uses_gpu def test_forward_vgg(): for n in [11]: mx_sym = model_zoo.mx_vgg(n) verify_mxnet_frontend_impl(mx_sym) @tvm.testing.uses_gpu def test_forward_resnet(): for n in [18]: mx_sym = model_zoo.mx_resnet(18) verify_mxnet_frontend_impl(mx_sym) @tvm.testing.uses_gpu def test_forward_leaky_relu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) mx_sym = mx.sym.LeakyReLU(data, act_type="leaky") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_elu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="elu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_rrelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="rrelu", lower_bound=0.3, upper_bound=0.7) verify_mxnet_frontend_impl(mx_sym[0], (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_prelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="prelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_gelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="gelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_softrelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.Activation(data, act_type="softrelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_fc_flatten(): # test flatten=True option in mxnet 0.11.1 data = mx.sym.var("data") try: mx_sym = mx.sym.FullyConnected(data, num_hidden=100, flatten=True) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) mx_sym = mx.sym.FullyConnected(mx.sym.Flatten(data), num_hidden=100, flatten=False) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) except: pass @tvm.testing.uses_gpu def test_forward_clip(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.clip(data, a_min=0, a_max=1) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_split(): data = mx.sym.var("data") mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=False) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 1, 2, 1)) @tvm.testing.uses_gpu def test_forward_split_squeeze(): data = mx.sym.var("data") mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=True) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 2, 1)) @tvm.testing.uses_gpu def test_forward_expand_dims(): data = mx.sym.var("data") mx_sym = mx.sym.expand_dims(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 1, 3, 4)) @tvm.testing.uses_gpu def test_forward_pooling(): data = mx.sym.var("data") mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type="avg") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type="max") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) @tvm.testing.uses_gpu def test_forward_pooling3d(): data = mx.sym.var("data") mx_sym = mx.sym.Pooling(data, kernel=(3, 3, 3), pad=(1, 1, 1), pool_type="avg") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8, 8), (1, 20, 8, 8, 8)) mx_sym = mx.sym.Pooling(data, kernel=(3, 3, 3), pad=(1, 1, 1), pool_type="max") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8, 8), (1, 20, 8, 8, 8)) @tvm.testing.uses_gpu def test_forward_adaptive_pooling(): data = mx.sym.var("data") mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(1,)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 1, 1)) mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(3, 3)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 3, 3)) @tvm.testing.uses_gpu def test_forward_lrn(): data = mx.sym.var("data") mx_sym = mx.sym.LRN(data, alpha=2, beta=2, knorm=1, nsize=5) verify_mxnet_frontend_impl(mx_sym, (1, 10, 24, 24), (1, 10, 24, 24)) @tvm.testing.uses_gpu def test_forward_ones(): data = mx.sym.var("data") ones = mx.sym.ones(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.elemwise_add(data, ones) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_zeros(): data = mx.sym.var("data") zeros = mx.sym.zeros(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.elemwise_add(data, zeros) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_ones_like(): data = mx.sym.var("data") mx_sym = mx.sym.ones_like(data, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_make_loss(): data = mx.sym.var("data") ones = mx.sym.ones(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.make_loss((data - ones) ** 2 / 2, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_zeros_like(): data = mx.sym.var("data") mx_sym = mx.sym.zeros_like(data, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_argmax(): data = mx.sym.var("data") mx_sym = mx.sym.argmax(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (5, 3), (5,)) @tvm.testing.uses_gpu def test_forward_argmin(): data = mx.sym.var("data") mx_sym = mx.sym.argmin(data, axis=0) verify_mxnet_frontend_impl(mx_sym, (5, 4), (4,)) @tvm.testing.uses_gpu def test_forward_slice(): data = mx.sym.var("data") mx_sym = mx.sym.slice(data, begin=(0, 1), end=(2, 4)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 3)) mx_sym = mx.sym.slice(data, begin=(-1, 1), end=(-3, 4), step=(-1, 2)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 2)) @tvm.testing.uses_gpu def test_forward_where(): cond = mx.sym.var("cond") x = mx.sym.var("x") y = mx.sym.var("y") dshape = (2, 2) dtype = "float32" mx_sym = mx.sym.where(cond, x, y) np_cond = np.array([[0, 1], [-1, 0]]).astype(dtype) np_x = np.random.uniform(size=dshape).astype(dtype) np_y = np.random.uniform(size=dshape).astype(dtype) mx_cond = mx.nd.array(np_cond) mx_x = mx.nd.array(np_x) mx_y = mx.nd.array(np_y) shapes = {"cond": dshape, "x": dshape, "y": dshape} mod = mx.mod.Module(mx_sym, label_names=None, data_names=["cond", "x", "y"]) mod.bind(data_shapes=shapes.items(), for_training=False) mod.init_params() args, auxs = mod.get_params() mx_out = mx.nd.where(mx_cond, mx_x, mx_y).asnumpy() mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, args, auxs) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( np_cond, np_x, np_y ) tvm.testing.assert_allclose(op_res.numpy(), mx_out) @tvm.testing.uses_gpu def test_forward_arange(): def _mx_symbol(F, start, stop, step): if start is None and step is None: sym = F.arange(stop) elif start is None: sym = F.arange(stop, step=step) elif step is None: sym = F.arange(start, stop) else: sym = F.arange(start, stop, step) return sym def verify(start, stop, step): ref_res = _mx_symbol(mx.nd, start, stop, step) mx_sym = _mx_symbol(mx.sym, start, stop, step) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(0, 20, None) verify(0, 20, 2) verify(1, 20, None) verify(1, 20, 2) verify(1, 20, 1.5) verify(1, 20.5, None) verify(1, 20, 3) verify(20, 1, -1) verify(20, 1, -1.5) def _mx_symbol(F, op_name, inputs): op = getattr(F, op_name) return op(*inputs) @tvm.testing.uses_gpu def test_forward_broadcast_ops(): for op in [ "broadcast_add", "broadcast_plus", "broadcast_sub", "broadcast_minus", "broadcast_mul", "broadcast_div", "broadcast_mod", "broadcast_maximum", "broadcast_minimum", "broadcast_equal", "broadcast_not_equal", "broadcast_greater", "broadcast_greater_equal", "broadcast_lesser", "broadcast_lesser_equal", "broadcast_power", "broadcast_logical_or", "broadcast_logical_and", "broadcast_logical_xor", ]: a_shape = (3, 4, 5) b_shape = (4, 5) if op == "broadcast_mod": dtype = "int32" a_np = np.random.randint(1, 100, size=a_shape).astype(dtype) b_np = np.random.randint(1, 100, size=b_shape).astype(dtype) else: dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = np.random.uniform(size=b_shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), mx.sym.var("b")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) shapes = {"a": a_shape, "b": b_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_elemwise_ops(): for op in [ "elemwise_add", "elemwise_sub", "elemwise_mul", "elemwise_div", "maximum", "minimum", operator.lt, operator.le, operator.eq, operator.ne, operator.gt, operator.ge, ]: shape = (3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=shape).astype(dtype) b_np = np.random.uniform(size=shape).astype(dtype) if type(op) == str: mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), mx.sym.var("b")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) else: mx_sym = op(mx.sym.var("a"), mx.sym.var("b")) ref_res = op(mx.nd.array(a_np), mx.nd.array(b_np)) shapes = {"a": shape, "b": shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_softmin(): data = mx.sym.var("data") mx_sym = mx.sym.softmin(data) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 3, 100, 100)) mx_sym = mx.sym.softmin(data, axis=2) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 3, 100, 100)) @tvm.testing.uses_gpu def test_forward_unary_ops(): for op in [ "abs", "sqrt", "ceil", "floor", "round", "reciprocal", "trunc", "softsign", "hard_sigmoid", "cos", "sin", "tan", "cosh", "sinh", "tanh", "arccos", "arcsin", "arctan", "arccosh", "arcsinh", "arctanh", ]: shape = (1, 3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np)]) shapes = {"a": shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_forward_scalar_ops(): for op in [ operator.add, operator.sub, operator.mul, operator.truediv, operator.pow, operator.lt, operator.le, operator.eq, operator.ne, operator.gt, operator.ge, ]: dtype = "float32" a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = op(mx.sym.var("a"), b_scalar) ref_res = op(mx.nd.array(a_np), b_scalar) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) for op in ["maximum", "minimum"]: dtype = "float32" a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), b_scalar]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), b_scalar]) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_slice_axis(): def verify(shape, axis, begin, end): data_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.slice_axis(mx.nd.array(data_np), axis, begin, end) mx_sym = mx.sym.slice_axis(mx.sym.var("data"), axis, begin, end) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), 0, 1, 2) verify((3, 4), 0, 1, None) verify((3, 4), 1, 0, 2) verify((3, 4), 1, -3, -1) verify((3, 4), -1, -3, -1) @tvm.testing.uses_gpu def test_forward_slice_like(): def verify(x_shape, y_shape, axes): x_np = np.random.uniform(size=x_shape).astype("float32") y_np = np.random.uniform(size=y_shape).astype("float32") if axes is None: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np)) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y")) else: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np), axes=axes) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y"), axes=axes) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": x_shape, "y": y_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, y_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), (2, 3), None) verify((3, 4), (2, 3), (0, 1)) verify((3, 4), (2, 3), (0)) verify((3, 4), (2, 3), (-1)) @tvm.testing.uses_gpu def test_forward_sequence_reverse(): def verify(shape, seq_lengths, use_seq_lengths, seq_axis): data_np = np.random.uniform(size=shape).astype("float32") ref_res_args = [mx.nd.array(data_np), None, use_seq_lengths, seq_axis] mx_sym_args = [mx.sym.var("data"), None, use_seq_lengths, seq_axis] from_mxnet_args = [{"data": shape}, {"data": "float32"}] in_data = [data_np] if use_seq_lengths and seq_lengths: seq_lengths_np = np.array(seq_lengths).astype("int32") ref_res_args[1] = mx.nd.array(seq_lengths_np) mx_sym_args[1] = mx.sym.var("seq_lengths") from_mxnet_args[0].update({"seq_lengths": seq_lengths_np.shape}) from_mxnet_args[1].update({"seq_lengths": "int32"}) in_data.append(seq_lengths_np) ref_res = mx.nd.SequenceReverse(*ref_res_args) mx_sym = mx.sym.SequenceReverse(*mx_sym_args) mod, _ = relay.frontend.from_mxnet(mx_sym, *from_mxnet_args) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( *in_data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), [1, 2, 3, 1], True, 0) verify((3, 4), None, False, 0) verify((3, 5, 5, 6), [1, 2, 3, 1, 3], True, 0) # MXNet accepts axis value as 0 only # verify((3, 4, 5, 6), None, False, 2) @tvm.testing.uses_gpu def test_forward_l2_normalize(): data = mx.sym.var("data") mx_sym = mx.sym.L2Normalization(data, mode="channel") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) mx_sym = mx.sym.L2Normalization(data, mode="instance") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) mx_sym = mx.sym.L2Normalization(data, mode="spatial") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) @tvm.testing.uses_gpu def test_forward_logistic_regression_output(): data_shape = (1, 10) dtype = "float32" data_np = np.random.uniform(size=data_shape).astype(dtype) label_np = np.random.uniform(size=data_shape).astype(dtype) mx_sym = mx.symbol.LogisticRegressionOutput(mx.sym.var("data"), mx.sym.var("label")) ref_res = mx.nd.LogisticRegressionOutput(mx.nd.array(data_np), mx.nd.array(label_np)) shapes = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_dot(): def verify(a_shape, b_shape, transpose_b=False): dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = np.random.uniform(size=b_shape).astype(dtype) mx_sym = mx.symbol.dot(mx.sym.var("a"), mx.sym.var("b"), transpose_b=transpose_b) ref_res = mx.nd.dot(mx.nd.array(a_np), mx.nd.array(b_np), transpose_b=transpose_b) shapes = {"a": a_shape, "b": b_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose( op_res.numpy(), ref_res.asnumpy(), rtol=1e-05, atol=1e-05 ) verify((1, 256), (256, 1)) verify((1, 256), (1, 256), transpose_b=True) @tvm.testing.uses_gpu def test_forward_shape_array(): def verify(shape): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.shape_array(mx.nd.array(x_np)) mx_sym = mx.sym.shape_array(mx.sym.var("x")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1,)) verify((3, 4, 5)) verify((3, 4, 5, 6)) @tvm.testing.uses_gpu def test_forward_squeeze(): def verify(shape, axis): x_np = np.random.uniform(size=shape).astype("float32") if axis is None: ref_res = mx.nd.squeeze(mx.nd.array(x_np)) mx_sym = mx.sym.squeeze(mx.sym.var("x")) else: ref_res = mx.nd.squeeze(mx.nd.array(x_np), axis=axis) mx_sym = mx.sym.squeeze(mx.sym.var("x"), axis=axis) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 3, 1), None) verify((1, 3, 1), 0) verify((1, 3, 1), 2) verify((1, 3, 1), (0, 2)) @tvm.testing.uses_gpu def test_forward_broadcast_axis(): def verify(shape, axis, size): x_np = np.random.uniform(size=shape).astype("float32") for op in ["broadcast_axis", "broadcast_axes"]: mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("x"), axis, size]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(x_np), axis, size]) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()(x_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 1), 2, 3) verify((1, 2, 1), (0, 2), (2, 3)) @tvm.testing.uses_gpu def test_forward_broadcast_to(): def verify(input_shape, shape): x_np = np.random.uniform(size=input_shape).astype("float32") ref_res = mx.nd.broadcast_to(mx.nd.array(x_np), shape=shape) mx_sym = mx.sym.broadcast_to(mx.sym.var("x"), shape=shape) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": input_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 3), (3, 2, 3)) verify((4, 1, 32, 32), (4, 8, 32, 32)) @tvm.testing.uses_gpu def test_forward_broadcast_like(): def verify(input_shape, like_shape): x_np = np.random.uniform(size=input_shape).astype("float32") y_np = np.random.uniform(size=like_shape).astype("float32") ref_res = mx.nd.broadcast_like(mx.nd.array(x_np), mx.nd.array(y_np)) mx_sym = mx.sym.broadcast_like(mx.sym.var("x"), mx.sym.var("y")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": input_shape, "y": like_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, y_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 3), (3, 2, 3)) verify((4, 1, 32, 32), (4, 8, 32, 32)) @tvm.testing.uses_gpu def test_forward_logical_not(): a_shape = (3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) mx_sym = mx.sym.logical_not(mx.sym.var("a")) ref_res = mx.nd.logical_not(mx.nd.array(a_np)) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_full(): def verify(val, shape, dtype): dev = mx.cpu() ref_res = mx.nd.full(shape, val, dtype=dtype) mx_sym = mx.sym.full(shape, val, dtype=dtype) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, dev in tvm.testing.enabled_targets(): # Skip testing graph executor because this op will be optimized out # by constant folding. for kind in ["debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(2, (3, 4), "float32") verify(2, (3, 4), "int32") verify(3.5, (1, 3, 4), "float32") @tvm.testing.uses_gpu def test_forward_embedding(): def verify(data_shape, weight_shape): in_dim, out_dim = weight_shape x_np = np.random.randint(0, weight_shape[0], size=data_shape).astype("float32") w_np = np.random.uniform(size=weight_shape).astype("float32") ref_res = mx.nd.Embedding( mx.nd.array(x_np), mx.nd.array(w_np), input_dim=in_dim, output_dim=out_dim ) mx_sym = mx.sym.Embedding( mx.sym.var("x"), mx.sym.var("w"), input_dim=in_dim, output_dim=out_dim ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": data_shape, "w": weight_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x=x_np, w=w_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), (4, 5)) verify((2, 3, 4), (4, 5)) @tvm.testing.uses_gpu def test_forward_smooth_l1(): data = mx.sym.var("data") mx_sym = mx.sym.smooth_l1(data) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) mx_sym = mx.sym.smooth_l1(data, scalar=1.0) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) @tvm.testing.uses_gpu def test_forward_take(): def verify(shape, indices_src, axis, mode="clip"): x_np = np.random.uniform(size=shape).astype("float32") indices_np = np.array(indices_src, dtype="float32") ref_res = mx.nd.take(mx.nd.array(x_np), mx.nd.array(indices_np), axis, mode) mx_sym = mx.sym.take(mx.sym.var("x"), mx.sym.var("y"), axis, mode) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape, "y": indices_np.shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, indices_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), [[[1, 0], [0, 1]]], 0) verify((2, 2), [[[1, 0], [0, 1]]], 1) verify((4, 3, 5, 6), [[2, 1, 0, 0]], -2) verify((3, 4), [-1, 5], 0) verify((3, 4), [-1, 5], 0, mode="wrap") verify((3, 4), [-1, 5], 1) verify((3, 4), [-1, 5], 1, mode="wrap") @tvm.testing.uses_gpu def test_forward_gather_nd(): def verify(xshape, yshape, y_data, error=False): x_data = np.random.uniform(size=xshape).astype("float32") ref_res = mx.nd.gather_nd(mx.nd.array(x_data), mx.nd.array(y_data)) mx_sym = mx.sym.gather_nd(mx.sym.var("x_data"), mx.sym.var("y_data")) mod, _ = relay.frontend.from_mxnet( mx_sym, {"x_data": xshape, "y_data": yshape}, {"x_data": "float32", "y_data": "int32"} ) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_data, y_data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), (2, 3), [[1, 1, 0], [0, 1, 0]]) verify((2, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2), (2, 2, 3), [[[0, 1, 2], [2, 0, 1]], [[0, 0, 0], [1, 1, 1]]]) verify((1, 4), (1, 1), [[0]]) @tvm.testing.uses_gpu def test_forward_bilinear_resize(): # add tests including scale_height and scale_width when mxnet is updated to version 1.5 data = mx.sym.var("data") mx_sym = mx.sym.contrib.BilinearResize2D(data, height=5, width=10) verify_mxnet_frontend_impl(mx_sym, (1, 2, 3, 4), (1, 2, 5, 10)) @tvm.testing.uses_gpu def test_forward_grid_generator(): def verify(shape, transform_type, target_shape): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.GridGenerator(mx.nd.array(x), transform_type, target_shape) mx_sym = mx.sym.GridGenerator(mx.sym.var("x"), transform_type, target_shape) shape_dict = {"x": x.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) verify((4, 6), "affine", (16, 32)) verify((4, 2, 16, 16), "warp", None) verify((1, 2, 16, 16), "warp", None) @tvm.testing.uses_gpu def test_forward_bilinear_sampler(): def verify(data_shape, grid_shape): data = np.random.uniform(size=data_shape).astype("float32") grid = np.random.uniform(low=-1.5, high=1.5, size=grid_shape).astype("float32") ref_res = mx.nd.BilinearSampler(mx.nd.array(data), mx.nd.array(grid)) mx_sym = mx.sym.BilinearSampler(mx.sym.var("data"), mx.sym.var("grid")) shape_dict = {"data": data.shape, "grid": grid.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data, grid ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) verify((4, 4, 16, 32), (4, 2, 8, 8)) verify((4, 4, 16, 32), (4, 2, 32, 32)) @tvm.testing.uses_gpu def test_forward_rnn_layer(): def verify( mode, seq_len, input_size, hidden_size, num_layers, batch=1, init_states=True, bidirectional=False, ): if mode == "rnn": layer = gluon.rnn.RNN(hidden_size, num_layers, bidirectional=bidirectional) elif mode == "gru": layer = gluon.rnn.GRU(hidden_size, num_layers, bidirectional=bidirectional) else: # mode == "lstm" layer = gluon.rnn.LSTM(hidden_size, num_layers, bidirectional=bidirectional) num_states = 2 if mode == "lstm" else 1 layer.initialize() layer.hybridize() dtype = "float32" directions = 2 if bidirectional else 1 data_np = np.random.uniform(size=(seq_len, batch, input_size)).astype(dtype) data_mx = mx.nd.array(data_np) if init_states: shape_dict = {"data0": data_np.shape} inputs = {"data0": data_np} state_shape = (num_layers * directions, batch, hidden_size) states_np = [] states_mx = [] for i in range(num_states): s = np.random.uniform(size=state_shape).astype(dtype) states_np.append(s) states_mx.append(mx.nd.array(s)) shape_dict["data%s" % (i + 1)] = s.shape inputs["data%s" % (i + 1)] = s mx_out, mx_states = layer(data_mx, states_mx) mx_res = [mx_out] + mx_states else: shape_dict = {"data": data_np.shape} inputs = {"data": data_np} mx_res = layer(data_mx) mx_sym = layer._cached_graph[1] mx_params = {} for name, param in layer.collect_params().items(): mx_params[name] = param._reduce() mod, params = relay.frontend.from_mxnet(mx_sym, shape=shape_dict, arg_params=mx_params) for target, dev in tvm.testing.enabled_targets(): # only test graph executor because debug runtime is too slow for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( **inputs, **params ) if init_states: assert len(op_res) == len(mx_res) for i, val in enumerate(op_res): tvm.testing.assert_allclose(val.numpy(), mx_res[i].asnumpy(), rtol=1e-3) else: tvm.testing.assert_allclose(op_res.numpy(), mx_res.asnumpy(), rtol=1e-3) for mode in ["rnn", "gru", "lstm"]: verify(mode, 1, 64, 64, 1) verify(mode, 10, 64, 64, 2) verify(mode, 10, 64, 32, 2) verify(mode, 10, 64, 32, 2, batch=2) verify(mode, 10, 32, 64, 1, bidirectional=True) # The following two codeblocks need to be fixed for mxnet 1.5 # verify(mode, 10, 64, 64, 3, init_states=False) # verify(mode, 10, 64, 64, 3, batch=2, bidirectional=True, init_states=False) @tvm.testing.uses_gpu def test_forward_Crop(): def verify(xshape, yshape, offset=None): x_data = np.random.uniform(size=xshape).astype("float32") y_data = np.random.uniform(size=yshape).astype("float32") if offset is None: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y")) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data)) else: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"), offset=offset) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data), offset=offset) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": xshape, "y": yshape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if offset is None or offset == (0, 0): op_res = func(x_data, y_data) else: op_res = func(x_data) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 3, 40, 40), (1, 3, 20, 20)) verify((1, 3, 40, 40), (1, 3, 20, 20), (0, 0)) verify((1, 3, 40, 40), (1, 3, 20, 20), (10, 10)) verify((5, 32, 40, 40), (5, 32, 25, 25)) verify((5, 32, 40, 40), (5, 32, 25, 25), (5, 5)) @tvm.testing.uses_gpu def test_forward_argsort(): def verify(shape, axis, is_ascend, dtype="float32"): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.argsort(mx.nd.array(x_np), axis=axis, is_ascend=is_ascend, dtype=dtype) mx_sym = mx.sym.argsort(mx.sym.var("x"), axis=axis, is_ascend=is_ascend, dtype=dtype) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 3, 4), axis=0, is_ascend=False) verify((1, 4, 6), axis=1, is_ascend=True) verify((3, 5, 6), axis=-3, is_ascend=False, dtype="int32") @tvm.testing.uses_gpu def test_forward_topk(): def verify(shape, k, axis, ret_type, is_ascend=None, dtype="float32"): x_np = np.random.uniform(size=shape).astype("float32") if is_ascend is None: ref_res = mx.nd.topk(mx.nd.array(x_np), k=k, axis=axis, ret_typ=ret_type, dtype=dtype) mx_sym = mx.sym.topk(mx.sym.var("x"), k=k, axis=axis, ret_typ=ret_type, dtype=dtype) else: ref_res = mx.nd.topk( mx.nd.array(x_np), k=k, axis=axis, ret_typ=ret_type, is_ascend=is_ascend, dtype=dtype, ) mx_sym = mx.sym.topk( mx.sym.var("x"), k=k, axis=axis, ret_typ=ret_type, is_ascend=is_ascend, dtype=dtype ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) if isinstance(ref_res, list): assert len(op_res) == len(ref_res) for i, t in enumerate(op_res): tvm.testing.assert_allclose(t.numpy(), ref_res[i].asnumpy()) else: tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), k=1, axis=0, ret_type="both") verify((3, 4), k=1, axis=-1, ret_type="indices") verify((3, 5, 6), k=2, axis=2, ret_type="value", is_ascend=False) verify((3, 5, 6), k=2, axis=1, ret_type="value", is_ascend=True) verify((3, 5, 6), k=0, axis=2, ret_type="both", dtype="int32") @tvm.testing.uses_gpu def test_forward_sequence_mask(): def verify(shape, use_sequence_length, value, axis, dtype, itype): data_np = np.random.uniform(size=shape).astype(dtype) valid_length_np = np.random.randint(0, shape[axis], size=shape[1 - axis]).astype(itype) if use_sequence_length: ref_res = mx.nd.SequenceMask( mx.nd.array(data_np, dtype=dtype), sequence_length=mx.nd.array(valid_length_np, dtype=itype), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mx_sym = mx.sym.SequenceMask( mx.sym.var("data"), sequence_length=mx.sym.var("valid_length"), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mod, _ = relay.frontend.from_mxnet( mx_sym, {"data": shape, "valid_length": valid_length_np.shape}, dtype={"data": dtype, "valid_length": itype}, ) else: ref_res = mx.nd.SequenceMask( mx.nd.array(data_np, dtype=dtype), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mx_sym = mx.sym.SequenceMask( mx.sym.var("data"), use_sequence_length=use_sequence_length, value=value, axis=axis ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape}, dtype={"data": dtype}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: if use_sequence_length is False and kind == "graph": # Disable the test for 'graph' when it's identity. continue func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if use_sequence_length: op_res = func(data_np, valid_length_np) else: op_res = func(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((5, 10), True, 0.0, 0, "float32", "float32") verify((5, 4, 3), True, 1.0, 1, "float32", "float32") verify((5, 4, 3), False, 1.0, 1, "float64", "float64") verify((5, 4, 3, 2), True, 1.0, 0, "float32", "float32") @tvm.testing.uses_gpu def test_forward_contrib_div_sqrt_dim(): def verify(shape): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.contrib.div_sqrt_dim(mx.nd.array(x_np)) mx_sym = mx.sym.contrib.div_sqrt_dim(mx.sym.var("x")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4)) verify((3, 4, 5)) @tvm.testing.uses_gpu def test_forward_batch_norm(): def verify(shape, axis=1, fix_gamma=False): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") moving_mean = np.random.uniform(size=(shape[axis])).astype("float32") moving_var = np.abs(np.random.uniform(size=(shape[axis])).astype("float32")) + 0.5 ref_res = mx.nd.BatchNorm( mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), mx.nd.array(moving_mean), mx.nd.array(moving_var), axis=axis, use_global_stats=True, fix_gamma=fix_gamma, ) mx_sym = mx.sym.BatchNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), mx.sym.var("mean"), mx.sym.var("var"), axis=axis, use_global_stats=True, fix_gamma=fix_gamma, ) shape_dict = { "x": x.shape, "gamma": gamma.shape, "beta": beta.shape, "mean": moving_mean.shape, "var": moving_var.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) # print(mod) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta, moving_mean, moving_var ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify((2, 3, 4, 5)) verify((2, 3, 4, 5), axis=0) verify((2, 3, 4, 5), axis=-1) verify((2, 3, 4, 5), fix_gamma=True) @tvm.testing.uses_gpu def test_forward_instance_norm(): def verify(shape, axis=1, epsilon=1e-5): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") ref_res = mx.nd.InstanceNorm(mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), epsilon) mx_sym = mx.sym.InstanceNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), epsilon ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=2e-5, atol=1e-5) verify((2, 3, 4, 5)) verify((32, 64, 80, 64)) verify((8, 6, 5)) verify((8, 7, 6, 5, 4)) @tvm.testing.uses_gpu def test_forward_layer_norm(): def verify(shape, axis=-1): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") ref_res = mx.nd.LayerNorm(mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), axis=axis) mx_sym = mx.sym.LayerNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), axis=axis ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((2, 5)) verify((2, 5), axis=0) verify((2, 5, 6)) @tvm.testing.uses_gpu def test_forward_group_norm(): def verify(shape, num_groups=1): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[1])).astype("float32") beta = np.random.uniform(size=(shape[1])).astype("float32") ref_res = mx.nd.GroupNorm( data=mx.nd.array(x), gamma=mx.nd.array(gamma), beta=mx.nd.array(beta), num_groups=num_groups, ) mx_sym = mx.sym.GroupNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), num_groups=num_groups ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 4, 2), num_groups=4) # TODO(trevmorr): MXNet GroupNorm implementation is bugged for cases when num_groups != num_channels # https://github.com/apache/incubator-mxnet/pull/18199 # verify((1, 4, 2, 3), num_groups=2) # verify((1, 4, 2, 3)) @tvm.testing.uses_gpu def test_forward_one_hot(): def verify(indices_shape, depth, on_value, off_value, dtype): x = np.random.randint(0, 5, size=indices_shape) ref_res = mx.nd.one_hot(mx.nd.array(x), depth, on_value, off_value, dtype) mx_sym = mx.sym.one_hot(mx.sym.var("x"), depth, on_value, off_value, dtype) shape_dict = {"x": x.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x.astype("float32") ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((3,), 3, 1, 0, "int32") verify((3,), 3, 1.0, 0.0, "float32") verify((2, 2), 5, 2, -2, "int32") verify((2, 2), 5, 0.5, -0.5, "float32") verify((3, 2, 4, 5), 6, 1, 0, "int32") verify((3, 2, 4, 5), 6, 1.0, 0.0, "float32") @tvm.testing.uses_gpu def test_forward_pad(): def verify(data_shape, out_shape, mode, pad_width, constant_value=0.0): data = mx.sym.var("data") mx_sym = mx.sym.pad(data, mode=mode, pad_width=pad_width, constant_value=constant_value) verify_mxnet_frontend_impl(mx_sym, data_shape=data_shape, out_shape=out_shape) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), constant_value=3.0, ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="edge", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="reflect", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), constant_value=3.0, ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="edge", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="reflect", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) @tvm.testing.uses_gpu def test_forward_slice(): def verify(data_shape, out_shape, begin, end): data = mx.sym.var("data") mx_sym = mx.sym.slice(data, begin=begin, end=end) verify_mxnet_frontend_impl(mx_sym, data_shape=data_shape, out_shape=out_shape) verify(data_shape=(1, 1, 10), out_shape=(1, 1, 8), begin=(0, 0, 2), end=(1, 1, 10)) verify( data_shape=(1, 1, 10), out_shape=(1, 1, 8), begin=(None, None, 2), end=(None, None, None) ) @tvm.testing.uses_gpu def test_forward_convolution(): def verify(data_shape, kernel_size, stride, pad, num_filter, is_depthwise=False): if is_depthwise: groups = data_shape[1] weight_shape = ( data_shape[1], num_filter // groups, ) + kernel_size else: groups = 1 weight_shape = ( num_filter, data_shape[1], ) + kernel_size x = np.random.uniform(size=data_shape).astype("float32") weight = np.random.uniform(size=weight_shape).astype("float32") bias = np.random.uniform(size=num_filter).astype("float32") ref_res = mx.nd.Convolution( data=mx.nd.array(x), weight=mx.nd.array(weight), bias=mx.nd.array(bias), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) mx_sym = mx.sym.Convolution( mx.sym.var("x"), mx.sym.var("weight"), mx.sym.var("bias"), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) shape_dict = {"x": x.shape, "weight": weight.shape, "bias": bias.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, weight, bias ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify(data_shape=(1, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify( data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=8, is_depthwise=True, ) verify( data_shape=(1, 1, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(20, 1, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(1, 8, 16, 16, 16), kernel_size=(3, 3, 3), stride=(2, 2, 2), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(20, 8, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) @tvm.testing.uses_gpu def test_forward_deconvolution(): def verify(data_shape, kernel_size, stride, pad, num_filter): weight_shape = (data_shape[1], num_filter) + kernel_size x = np.random.uniform(size=data_shape).astype("float32") weight = np.random.uniform(size=weight_shape).astype("float32") bias = np.random.uniform(size=num_filter).astype("float32") ref_res = mx.nd.Deconvolution( data=mx.nd.array(x), weight=mx.nd.array(weight), bias=mx.nd.array(bias), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, no_bias=False, ) mx_sym = mx.sym.Deconvolution( mx.sym.var("x"), mx.sym.var("weight"), mx.sym.var("bias"), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, no_bias=False, ) shape_dict = {"x": x.shape, "weight": weight.shape, "bias": bias.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, weight, bias ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify(data_shape=(1, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) @tvm.testing.uses_gpu def test_forward_cond(): def verify(a_np, b_np): a_nd, b_nd = mx.nd.array(a_np), mx.nd.array(b_np) pred = a_nd * b_nd < 5 then_func = lambda: (a_nd + 5) * (b_nd + 5) else_func = lambda: (a_nd - 5) * (b_nd - 5) ref_res = mx.nd.contrib.cond(pred, then_func, else_func) a_sym, b_sym = mx.sym.var("a"), mx.sym.var("b") pred = a_sym * b_sym < 5 then_func = lambda: (a_sym + 5) * (b_sym + 5) else_func = lambda: (a_sym - 5) * (b_sym - 5) mx_sym = mx.sym.contrib.cond(pred, then_func, else_func) shape_dict = {"a": a_np.shape, "b": b_np.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["debug", "vm"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify(np.asarray([1.0], "float32"), np.asarray([2.0], "float32")) verify(np.asarray([4.0], "float32"), np.asarray([3.0], "float32")) @tvm.testing.uses_gpu def test_forward_amp_cast(): def verify(from_dtype, to_dtype): from_np = np.random.uniform(size=(1, 3, 18)).astype(from_dtype) x_var = mx.sym.var("x", dtype=from_dtype) mx_sym = mx.sym.amp_cast(x_var, dtype=to_dtype) shape_dict = {"x": (1, 3, 18)} dtype_dict = {"x": from_dtype} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( from_np ) assert op_res.dtype == to_dtype, op_res.dtype tvm.testing.assert_allclose(op_res.numpy(), from_np.astype(to_dtype)) verify("float32", "float16") verify("float16", "float32") @tvm.testing.uses_gpu def test_forward_amp_multicast(): def verify(dtypes, cast_narrow, expected_dtype): x_nps = [np.random.uniform(size=(1, 3, 18)).astype(dtype) for dtype in dtypes] x_vars = [mx.sym.var(str(i), dtype=dtype) for i, dtype in enumerate(dtypes)] mx_sym = mx.sym.amp_multicast(*x_vars, cast_narrow=cast_narrow, num_outputs=len(dtypes)) shape_dict = {} dtype_dict = {} for i, dtype in enumerate(dtypes): shape_dict[str(i)] = (1, 3, 18) dtype_dict[str(i)] = dtype mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( *x_nps ) for i, res in enumerate(op_res): assert res.dtype == expected_dtype, res.dtype tvm.testing.assert_allclose(res.numpy(), x_nps[i].astype(expected_dtype)) verify(["float32", "float16"], False, "float32") verify(["float32", "float16"], True, "float16") verify(["float32", "float32"], False, "float32") verify(["float32", "float32"], True, "float32") verify(["float16", "float16"], False, "float16") verify(["float16", "float16"], True, "float16") @tvm.testing.uses_gpu def test_forward_unravel_index(): def verify(x, shape, dtype): a_np = np.array(x).astype(dtype) mx_sym = _mx_symbol(mx.sym, "unravel_index", [mx.sym.var("a"), shape]) ref_res = _mx_symbol(mx.nd, "unravel_index", [mx.nd.array(a_np), shape]) shapes = {"a": a_np.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) for dtype in ["int32", "int64"]: verify([0, 1, 2, 3], [2, 2], dtype) verify([144, 13, 45], [6, 7, 10, 2], dtype) verify([456], [6, 7, 10, 2], dtype) # In below example, 5 is out of bound for array of size 4. # MXNet implementation provides different result than TVM # TVM implementation is inline with Tensorflow # Ideally error should be thrown just like Numpy # verify([0, 1, 2, 5], [2, 2], dtype) @tvm.testing.uses_gpu def test_forward_swap_axis(): def _verify_swap_axis(in_shape, out_shape, dim1, dim2): data = mx.sym.var("data") mx_sym = mx.sym.swapaxes(data, dim1, dim2) verify_mxnet_frontend_impl(mx_sym, in_shape, out_shape) _verify_swap_axis((4, 5), (5, 4), 0, 1) _verify_swap_axis((2, 4, 4, 5), (2, 5, 4, 4), 1, 3) # MXNet errors out when dim1 == dim2 # _verify_swap_axis((4, 5), (5, 4), 0, 0) @tvm.testing.uses_gpu def test_forward_depth_to_space(): def verify(shape, blocksize=2): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.depth_to_space(mx.nd.array(x), blocksize) mx_sym = mx.sym.depth_to_space(mx.sym.var("x"), blocksize) shape_dict = { "x": x.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 18, 3, 3), 3) @tvm.testing.uses_gpu def test_forward_space_to_depth(): def verify(shape, blocksize=2): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.space_to_depth(mx.nd.array(x), blocksize) mx_sym = mx.sym.space_to_depth(mx.sym.var("x"), blocksize) shape_dict = { "x": x.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 1, 9, 9), 3) @tvm.testing.uses_gpu def test_forward_correlation(): def verify(data_shape, kernel_size, max_displacement, stride1, stride2, pad_size, is_multiply): data1 = np.random.uniform(size=data_shape).astype("float32") data2 = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.Correlation( data1=mx.nd.array(data1), data2=mx.nd.array(data2), kernel_size=kernel_size, max_displacement=max_displacement, stride1=stride1, stride2=stride2, pad_size=pad_size, is_multiply=is_multiply, ) mx_sym = mx.sym.Correlation( data1=mx.sym.var("data1"), data2=mx.sym.var("data2"), kernel_size=kernel_size, max_displacement=max_displacement, stride1=stride1, stride2=stride2, pad_size=pad_size, is_multiply=is_multiply, ) shape_dict = {"data1": data1.shape, "data2": data2.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data1, data2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify( (1, 3, 10, 10), kernel_size=1, max_displacement=4, stride1=1, stride2=1, pad_size=4, is_multiply=False, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=5, stride1=1, stride2=1, pad_size=5, is_multiply=False, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=5, stride1=1, stride2=1, pad_size=5, is_multiply=True, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=10, stride1=1, stride2=2, pad_size=10, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=1, stride2=1, pad_size=2, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=False, ) verify( (5, 1, 6, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=False, ) verify( (5, 1, 11, 11), kernel_size=5, max_displacement=1, stride1=1, stride2=1, pad_size=2, is_multiply=False, ) @tvm.testing.uses_gpu def test_forward_arange_like(): def verify(data_shape, start=None, step=None, axis=None): attrs = {} if start is not None: attrs["start"] = start if step is not None: attrs["step"] = step if axis is not None: attrs["axis"] = axis data = mx.sym.var("data") data_np = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.contrib.arange_like(mx.nd.array(data_np), **attrs) mx_sym = mx.sym.contrib.arange_like(data, **attrs) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(data_shape=(3,), start=0.0, step=1.0) verify(data_shape=(3, 4, 5), start=0.0, step=1.0) verify(data_shape=(3, 4, 5), start=0.0, step=1.0, axis=-1) verify(data_shape=(3, 4, 5), start=2.0, step=3.0, axis=1) @tvm.testing.uses_gpu def test_forward_interleaved_matmul_selfatt_qk(): def verify(batch, seq_length, num_heads, head_dim): data_shape = (seq_length, batch, num_heads * head_dim * 3) data = mx.sym.var("data") data_np = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.contrib.interleaved_matmul_selfatt_qk(mx.nd.array(data_np), heads=num_heads) mx_sym = mx.sym.contrib.interleaved_matmul_selfatt_qk(data, heads=num_heads) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) verify(1, 10, 3, 16) verify(3, 10, 6, 8) @tvm.testing.uses_gpu def test_forward_interleaved_matmul_selfatt_valatt(): def verify(batch, seq_length, num_heads, head_dim): data_shape = (seq_length, batch, num_heads * head_dim * 3) weight_shape = (batch * num_heads, seq_length, seq_length) data = mx.sym.var("data") weight = mx.sym.var("weight") data_np = np.random.uniform(size=data_shape).astype("float32") weight_np = np.random.uniform(size=weight_shape).astype("float32") ref_res = mx.nd.contrib.interleaved_matmul_selfatt_valatt( mx.nd.array(data_np), mx.nd.array(weight_np), heads=num_heads ) mx_sym = mx.sym.contrib.interleaved_matmul_selfatt_valatt(data, weight, heads=num_heads) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape, "weight": weight_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data=data_np, weight=weight_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) verify(1, 10, 4, 16) verify(3, 10, 6, 8) @tvm.testing.uses_gpu def test_forward_box_nms(): def verify( data_shape, overlap_thresh=0.5, valid_thresh=0, topk=1, coord_start=2, score_index=1, id_index=0, force_suppress=False, in_format="corner", ): dtype = "float32" data = np.random.uniform(low=0, high=1, size=data_shape).astype(dtype) ref_res = mx.nd.contrib.box_nms( mx.nd.array(data), overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, topk=topk, coord_start=coord_start, score_index=score_index, id_index=id_index, force_suppress=force_suppress, background_id=-1, in_format=in_format, out_format=in_format, ) mx_sym = mx.sym.contrib.box_nms( mx.sym.var("data"), overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, topk=topk, coord_start=coord_start, score_index=score_index, id_index=id_index, force_suppress=force_suppress, background_id=-1, in_format=in_format, out_format=in_format, ) shape_dict = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): if tvm.contrib.thrust.can_use_thrust( tvm.target.Target(target + " -libs=thrust"), "tvm.contrib.thrust.sort" ): target += " -libs=thrust" for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 10, 6)) # No valid boxes verify((1, 10, 6), valid_thresh=1) @tvm.testing.uses_gpu def test_forward_box_decode(): def verify(data_shape, anchor_shape, stds=[1, 1, 1, 1], clip=-1, in_format="corner"): dtype = "float32" data = np.random.uniform(low=-2, high=2, size=data_shape).astype(dtype) anchors = np.random.uniform(low=-2, high=2, size=anchor_shape).astype(dtype) ref_res = mx.nd.contrib.box_decode( mx.nd.array(data), mx.nd.array(anchors), stds[0], stds[1], stds[2], stds[3], clip, in_format, ) mx_sym = mx.sym.contrib.box_decode( mx.sym.var("data"), mx.sym.var("anchors"), stds[0], stds[1], stds[2], stds[3], clip, in_format, ) shape_dict = {"data": data_shape, "anchors": anchor_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data, anchors ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 10, 4), (1, 10, 4)) verify((4, 10, 4), (1, 10, 4)) verify((1, 10, 4), (1, 10, 4), stds=[2, 3, 0.5, 1.5]) verify((1, 10, 4), (1, 10, 4), clip=1) verify((1, 10, 4), (1, 10, 4), in_format="center") @tvm.testing.uses_gpu def test_forward_softmax(): def verify(data_shape, axis, use_length, length): dtype = "float32" x = np.random.uniform(low=-100, high=100, size=data_shape).astype(dtype) if use_length: ref_res = mx.nd.softmax( data=mx.nd.array(x), length=mx.nd.array(length, dtype="int32"), axis=axis, use_length=use_length, ) mx_sym = mx.symbol.softmax( data=mx.sym.var("data"), length=mx.sym.var("length"), axis=axis, use_length=use_length, ) shape_dict = {"data": data_shape, "length": (length.shape)} dtype_dict = {"data": dtype, "length": "int32"} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) else: ref_res = mx.nd.softmax(data=mx.nd.array(x), axis=axis) mx_sym = mx.symbol.softmax(data=mx.sym.var("data"), axis=axis) shape_dict = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if use_length: op_res = func(x, length) else: op_res = func(x) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((2, 3, 5), -1, False, None) verify((2, 3, 5), 2, False, None) verify((2, 3), -1, True, np.array([2, 1]).astype("int32")) verify((2, 3, 4), -1, True, np.array([[3, 4, 2], [2, 1, 1]]).astype("int32")) verify((2, 3, 4), 2, True, np.array([[3, 4, 2], [1, 2, 1]]).astype("int32")) @pytest.mark.skipif(not hasattr(mx.sym.np, "pad"), reason="mx.sym.np.pad hasn't been publish yet") @pytest.mark.parametrize( "data_shape, pad_width", [ ((1, 1, 3, 5), ((0, 0), (0, 0), (1, 2), (3, 4))), ((1, 1, 3, 5, 7), ((0, 0), (0, 0), (1, 2), (3, 4), (5, 6))), ], ) @pytest.mark.parametrize("mode", ["constant", "edge", "reflect"]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @pytest.mark.parametrize("constant_value", [0.0, 3.0]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_pad(data_shape, pad_width, mode, dtype, constant_value, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") if mode == "constant": ref_res = np.pad(data_np, mode=mode, pad_width=pad_width, constant_values=constant_value) mx_sym = mx.sym.np.pad( data.as_np_ndarray(), mode=mode, pad_width=pad_width, constant_values=constant_value ) else: ref_res = np.pad(data_np, mode=mode, pad_width=pad_width) mx_sym = mx.sym.np.pad(data.as_np_ndarray(), mode=mode, pad_width=pad_width) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) @pytest.mark.skipif( not hasattr(mx.sym.np, "pad"), reason="test'll abort with Mxnet 1.x, skip for now" ) @pytest.mark.parametrize("data_shape", [(2, 2, 2), (2, 7, 2)]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("axes", [(1, 0, 2), None]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_transpose(data_shape, axes, dtype, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.np.transpose(mx.np.array(data_np), axes=axes) mx_sym = mx.sym.np.transpose(data.as_np_ndarray(), axes=axes) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape1, data_shape2, axis", [ ((2, 2), (2, 2), 1), ((2, 4), (2, 3), 1), ((1, 3, 2), (1, 3, 5), 2), ((1, 3, 3), (1, 3, 3), 1), ((1, 3), (1, 3), 0), ], ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_concatenate(data_shape1, data_shape2, axis, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape1).astype(dtype) data_np2 = np.random.uniform(size=data_shape2).astype(dtype) data1 = mx.sym.var("data1") data2 = mx.sym.var("data2") ref_res = mx.np.concatenate([mx.np.array(data_np1), mx.np.array(data_np2)], axis=axis) mx_sym = mx.sym.np.concatenate([data1.as_np_ndarray(), data2.as_np_ndarray()], axis=axis) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"data1": data_shape1, "data2": data_shape2}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape1, data_shape2, axis", [ ((3,), (3,), 0), ((3,), (3,), -1), ((1, 3, 2), (1, 3, 2), 2), ((1, 3, 3), (1, 3, 3), 1), ((1, 3), (1, 3), 0), ], ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_stack(data_shape1, data_shape2, axis, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape1).astype(dtype) data_np2 = np.random.uniform(size=data_shape2).astype(dtype) data1 = mx.sym.var("data1") data2 = mx.sym.var("data2") ref_res = mx.np.stack([mx.np.array(data_np1), mx.np.array(data_np2)], axis=axis) mx_sym = mx.sym.np.stack([data1.as_np_ndarray(), data2.as_np_ndarray()], axis=axis) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"data1": data_shape1, "data2": data_shape2}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8)]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_np_copy(data_shape, dtype, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.np.copy(mx.np.array(data_np)) mx_sym = mx.sym.np.copy(data.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) @pytest.mark.parametrize( "data_shape,out_shape,reverse", [ ((2, 3, 8), (-2, -2, 2, -1), False), ((8, 3, 3, 3, 4, 4), (-6, 2, -1, -4), False), ((8, 3, 3, 3, 4, 4), (-5, -4), False), ((1, 8, 3, 3, 3, 4, 4), (-3, -5, -4), False), ((8, 1, 3, 4), (-2, -3, -1), False), ((8, 3, 3, 3, 3, 8), (-4, -5), True), ((8, 3, 2, 4, 8), (-4, -1, 2, -6), True), ((3, 2, 4, 8, 1, 1), (-4, -1, 2, -6, -5, -3), True), ((2, 4, 1, 8), (-4, -3, -1, 2, -6), True), ], ) def test_forward_npx_reshape(data_shape, out_shape, dtype, target, reverse, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.npx.reshape(mx.np.array(data_np), newshape=out_shape, reverse=reverse) mx_sym = mx.sym.npx.reshape(data.as_np_ndarray(), newshape=out_shape, reverse=reverse) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_binary(data_shape, dtype, target, dev, kind): ref_ops = [mx.np.power, mx.np.multiply, mx.np.add, mx.np.subtract, mx.np.less] mx_ops = [ mx.sym.np.power, mx.sym.np.multiply, mx.sym.np.add, mx.sym.np.subtract, mx.sym.np.less, ] for i in range(len(ref_ops)): ref_op = ref_ops[i] mx_op = mx_ops[i] # mx.np.power only support float type if ref_op == mx.np.power and dtype not in ["float64", "float32"]: continue data_np1 = np.random.uniform(size=data_shape).astype(dtype) data_np2 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("lhs") data2 = mx.sym.var("rhs") ref_res = ref_op(mx.np.array(data_np1), mx.np.array(data_np2)) mx_sym = mx_op(data1.as_np_ndarray(), data2.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"lhs": data_shape, "rhs": data_shape}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("scalar", [1.0, 2.0, 3.0, 4.0]) @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_binary_scalar(data_shape, dtype, scalar, target, dev, kind): ref_ops = [mx.np.power, mx.np.multiply, mx.np.add, mx.np.subtract, mx.np.true_divide] mx_ops = [ mx.sym.np.power, mx.sym.np.multiply, mx.sym.np.add, mx.sym.np.subtract, mx.sym.np.true_divide, ] for i in range(len(ref_ops)): ref_op = ref_ops[i] mx_op = mx_ops[i] # mx.np.power only support float type if ref_op == mx.np.power and dtype not in ["float64", "float32"]: continue data_np1 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("lhs") ref_res = ref_op(mx.np.array(data_np1), scalar) mx_sym = mx_op(data1.as_np_ndarray(), scalar) mod, _ = relay.frontend.from_mxnet(mx_sym, shape={"lhs": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_tanh(data_shape, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("data") ref_res = mx.np.tanh(mx.np.array(data_np1)) mx_sym = mx.sym.np.tanh(data1.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet(mx_sym, shape={"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np1) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.skipif(not hasattr(mx.np, "where"), reason="mx.np.where hasn't been publish yet") @pytest.mark.parametrize( "data_shape,cond_shape", [[(2, 2, 2), (2, 2, 2)], [(2, 7, 2), (7, 2)], [(2, 2), (1, 2)], [(1, 3), (3, 3)]], ) @pytest.mark.parametrize("data_dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("cond_dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("scalar", [1.0, 2.0]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_where_rscalar( data_shape, cond_shape, data_dtype, cond_dtype, scalar, target, dev, kind ): if data_dtype == "bool": scalar = scalar == 0.0 cond_np = np.random.uniform(size=cond_shape).astype(cond_dtype) data_np = np.random.uniform(size=data_shape).astype(data_dtype) cond = mx.sym.var("condition") data = mx.sym.var("x") ref_res = mx.np.where(mx.np.array(cond_np), mx.np.array(data_np), scalar) mx_sym = mx.sym.np.where(cond.as_np_ndarray(), data.as_np_ndarray(), scalar) dtypeDic = {} dtypeDic["condition"] = cond_dtype dtypeDic["x"] = data_dtype mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"condition": cond_shape, "x": data_shape}, dtype=dtypeDic ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( cond_np, data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) @pytest.mark.parametrize( "data_shape, axis, indices_or_sections, squeeze_axis", [ ((3, 2, 1), 1, 2, False), ((3, 2, 1), 0, 3, False), ((3, 2, 1), 0, 3, True), ((3, 2, 1), 0, (1, 2), False), ], ) def test_forward_split_v2( data_shape, axis, dtype, indices_or_sections, squeeze_axis, target, dev, kind ): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.ndarray.split_v2( mx.nd.array(data_np), indices_or_sections, axis=axis, squeeze_axis=squeeze_axis ) mx_sym = mx.sym.split_v2( data.as_nd_ndarray(), indices_or_sections, axis=axis, squeeze_axis=squeeze_axis ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) op_res_ = [] for arr in op_res: op_res_.append(arr.numpy().tolist()) ref_res_ = [] for arr in ref_res: ref_res_.append(arr.asnumpy().tolist()) tvm.testing.assert_allclose(op_res_, ref_res_, rtol=1e-5) if __name__ == "__main__": pytest.main(["test_forward.py"])