# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """Test torch vision fasterrcnn and maskrcnn models""" import numpy as np import cv2 import torch import torchvision import tvm import tvm.testing from tvm import relay from tvm.runtime.vm import VirtualMachine from tvm.relay.frontend.pytorch_utils import ( rewrite_nms_to_batched_nms, rewrite_batched_nms_with_max_out_size, rewrite_scatter_to_gather, ) from tvm.contrib.download import download in_size = 300 def process_image(img): img = cv2.imread(img).astype("float32") img = cv2.resize(img, (in_size, in_size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img / 255.0).permute(2, 0, 1).float() img = torch.unsqueeze(img, axis=0) return img def do_trace(model, inp, in_size=in_size): model_trace = torch.jit.trace(model, inp) model_trace.eval() return model_trace def dict_to_tuple(out_dict): if "masks" in out_dict.keys(): return out_dict["boxes"], out_dict["scores"], out_dict["labels"], out_dict["masks"] return out_dict["boxes"], out_dict["scores"], out_dict["labels"] class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): out = self.model(inp) return dict_to_tuple(out[0]) def generate_jit_model(index): model_funcs = [ torchvision.models.detection.fasterrcnn_resnet50_fpn, torchvision.models.detection.maskrcnn_resnet50_fpn, ] model_func = model_funcs[index] model = TraceWrapper(model_func(pretrained=True, rpn_pre_nms_top_n_test=1000)) model.eval() inp = torch.Tensor(np.random.uniform(0.0, 250.0, size=(1, 3, in_size, in_size))) with torch.no_grad(): out = model(inp) script_module = do_trace(model, inp) script_out = script_module(inp) assert len(out[0]) > 0 and len(script_out[0]) > 0 return script_module def test_detection_models(): img = "test_street_small.jpg" img_url = ( "https://raw.githubusercontent.com/dmlc/web-data/" "master/gluoncv/detection/street_small.jpg" ) download(img_url, img) input_shape = (1, 3, in_size, in_size) input_name = "input0" shape_list = [(input_name, input_shape)] scripted_model = generate_jit_model(1) mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) data = process_image(img) data_np = data.detach().numpy() with torch.no_grad(): pt_res = scripted_model(data) def compile_and_run_vm(mod, params, data_np, target): with tvm.transform.PassContext(opt_level=3): vm_exec = relay.vm.compile(mod, target=target, params=params) dev = tvm.device(target, 0) vm = VirtualMachine(vm_exec, dev) vm.set_input("main", **{input_name: data_np}) return vm.run() for target in ["llvm"]: tvm_res = compile_and_run_vm(mod, params, data_np, target) # Bounding boxes tvm.testing.assert_allclose( pt_res[0].cpu().numpy(), tvm_res[0].numpy(), rtol=1e-5, atol=1e-5 ) # Scores tvm.testing.assert_allclose( pt_res[1].cpu().numpy(), tvm_res[1].numpy(), rtol=1e-5, atol=1e-5 ) # Class ids np.testing.assert_equal(pt_res[2].cpu().numpy(), tvm_res[2].numpy()) score_threshold = 0.9 print("Num boxes:", pt_res[0].cpu().numpy().shape[0]) print("Num valid boxes:", np.sum(pt_res[1].cpu().numpy() >= score_threshold)) before = mod["main"] mod = rewrite_nms_to_batched_nms(mod) after = mod["main"] assert not tvm.ir.structural_equal(after, before) # TODO(masahi): It seems this rewrite causes flaky segfaults on CI # See https://github.com/apache/tvm/issues/7363 # before = mod["main"] # mod = rewrite_batched_nms_with_max_out_size(mod) # after = mod["main"] # assert not tvm.ir.structural_equal(after, before) before = mod["main"] mod = rewrite_scatter_to_gather(mod, 4) # num_scales is 4 for maskrcnn_resnet50_fpn after = mod["main"] assert not tvm.ir.structural_equal(after, before) tvm_res_after_rewrite = compile_and_run_vm(mod, params, data_np, "llvm") # Results should be equivalent after rewriting for res1, res2 in zip(tvm_res, tvm_res_after_rewrite): tvm.testing.assert_allclose(res1.numpy(), res2.numpy())