# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np @tvm.testing.requires_llvm def test_dot(): nn = 12 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") k = te.reduce_axis((0, n), "k") C = te.compute((), lambda: te.sum(A[k] * B[k], axis=k), name="C") s = te.create_schedule(C.op) def verify(target): f = tvm.driver.build(s, [A, B, C], target) # verify dev = tvm.cpu(0) a = tvm.nd.array(np.random.uniform(size=(nn,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(nn,)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((), dtype=C.dtype), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), np.dot(a.numpy(), b.numpy()), rtol=1e-4) verify("llvm") if __name__ == "__main__": test_dot()