# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Support level6 operator test cases. """ import numpy as np import tvm from tvm import te from tvm import relay import tvm.testing @tvm.testing.uses_gpu def test_dynamic_topk(): def verify_topk(k, axis, ret_type, is_ascend, dtype): shape = (20, 100) x = relay.var("x", relay.TensorType(shape, "float32")) k_var = relay.var("x", relay.TensorType((1,), "float32")) out = relay.topk(x, k_var, axis, ret_type, is_ascend, dtype) if isinstance(out, relay.expr.TupleWrapper): out = out.astuple() func = relay.Function([x, k_var], out) np_data = np.random.uniform(size=shape).astype("float32") if is_ascend: np_indices = np.argsort(np_data, axis=axis) else: np_indices = np.argsort(-np_data, axis=axis) kk = k if k >= 1 else shape[axis] if axis == 0: np_indices = np_indices[:kk, :] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[1]): np_values[:, i] = np_data[np_indices[:, i], i] else: np_indices = np_indices[:, :kk] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[0]): np_values[i, :] = np_data[i, np_indices[i, :]] np_indices = np_indices.astype(dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["vm", "debug"]: mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( np_data, np.array([k]).astype("float32") ) if ret_type == "both": tvm.testing.assert_allclose(op_res[0].numpy(), np_values) tvm.testing.assert_allclose(op_res[1].numpy(), np_indices) elif ret_type == "values": tvm.testing.assert_allclose(op_res.numpy(), np_values) else: tvm.testing.assert_allclose(op_res.numpy(), np_indices) np.random.seed(0) for k in [0, 1, 5]: for axis in [0, -1, 1]: for ret_type in ["both", "values", "indices"]: verify_topk(k, axis, ret_type, True, "int64") verify_topk(k, axis, ret_type, False, "float32") if __name__ == "__main__": test_dynamic_topk()