# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import scipy from scipy import special import tvm import tvm.testing import tvm.relay as relay from tvm import topi from tvm import te from tvm.contrib import graph_executor from tvm.topi import testing @tvm.testing.parametrize_targets("llvm", "cuda") def test_fastmath(target, dev): def test_apply(relay_op, name, f_numpy, low, high, step, dtype="float32"): a_np = np.arange(low, high, step).astype(dtype).reshape((1, -1)) b_np = f_numpy(a_np) x = relay.var("x", shape=a_np.shape, dtype="float32") y = relay_op(x) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]): graph, lib, params = relay.build(mod, target=target, params=None) # Check that the op related to fast math have been convered to function in lib func_name = "tvmgen_default_fused_" + name # When there're multiple targets in tvm.testing.parametrize_targets, the function # built will have a "_1" in function name assert func_name in graph m = graph_executor.create(graph, lib, dev) # Set inputs m.set_input("x", tvm.nd.array(a_np, dev)) m.set_input(**params) # Execute m.run() # Get outputs tvm_output = m.get_output(0) tvm.testing.assert_allclose(tvm_output.numpy(), b_np, rtol=1e-5, atol=1e-5) test_apply(relay.exp, "fast_exp", np.exp, low=-88, high=88, step=0.01) test_apply(relay.erf, "fast_erf", scipy.special.erf, low=-10, high=10, step=0.01) test_apply(relay.tanh, "fast_tanh", np.tanh, low=-10, high=10, step=0.01) test_apply( relay.nn.fast_softmax, "nn_fast_softmax", tvm.topi.testing.softmax_python, low=-10, high=10, step=0.01, ) if __name__ == "__main__": test_fastmath()