# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import numpy as np from tvm import relay from tvm.relay.testing import check_grad, _np_randn_from_type def verify_reduction_grad(red_fn, d_shape, axis=None, keepdims=False, exclude=False): data = relay.var("data", relay.TensorType(d_shape, "float32")) fwd_func = relay.Function([data], red_fn(data, axis=axis, keepdims=keepdims, exclude=exclude)) check_grad(fwd_func) def test_reduction_grad(): def _unbiased_variance(x, axis=None, keepdims=False, exclude=False): return relay.variance(x, axis=axis, keepdims=keepdims, exclude=exclude, unbiased=True) for op in (relay.sum, relay.variance, _unbiased_variance, relay.mean): verify_reduction_grad(op, (4, 2)) verify_reduction_grad(op, (4, 2), axis=-1, keepdims=True) verify_reduction_grad(op, (4, 2, 1), axis=(1, 2), exclude=True) verify_reduction_grad(op, (4, 2, 1), axis=1) def verify_max_grad(d_shape, axis=None, keepdims=False, exclude=False): data = relay.var("data", relay.TensorType(d_shape, "float32")) fwd_func = relay.Function( [data], relay.max(data, axis=axis, keepdims=keepdims, exclude=exclude) ) check_grad(fwd_func, scale=1e-3) def test_max_grad(): verify_max_grad((10, 10), axis=None) verify_max_grad((10, 10), axis=-1) verify_max_grad((6, 3, 2), axis=(1, 2), keepdims=True) verify_max_grad((5, 4, 3), axis=(0, 2), exclude=True) def test_where_grad(): cond_type = relay.TensorType((2, 3, 4), "int32") lhs_type = relay.TensorType((1, 3, 4), "float32") rhs_type = relay.TensorType((2, 1, 4), "float32") inputs = [ np.random.randint(2, size=cond_type.concrete_shape, dtype=cond_type.dtype), _np_randn_from_type(lhs_type, scale=1e-5), _np_randn_from_type(rhs_type, scale=1e-5), ] cond = relay.var("cond", type_annotation=cond_type) lhs = relay.var("lhs", type_annotation=lhs_type) rhs = relay.var("rhs", type_annotation=rhs_type) fwd_func = relay.Function([cond, lhs, rhs], relay.where(cond, lhs, rhs)) check_grad(fwd_func, inputs=inputs, test_inputs=inputs[1:]) def test_less_equal_grad(): x_type = relay.TensorType((2, 3, 4), "float32") y_type = relay.TensorType((3, 1), "float32") # We need to generate inputs far apart to get correct numerical gradients # (otherwise adding epsilon may change comparison result). The gradient # should always be zero for both inputs. inputs = [ np.random.choice([-1, 1], size=x_type.concrete_shape).astype(x_type.dtype), np.random.choice([-2, 2], size=y_type.concrete_shape).astype(y_type.dtype), ] x = relay.var("x", type_annotation=x_type) y = relay.var("y", type_annotation=y_type) fwd_func = relay.Function([x, y], relay.less_equal(x, y)) check_grad(fwd_func, inputs=inputs, test_inputs=inputs, eps=1e-6) def test_not_equal_grad(): x_type = relay.TensorType((2, 3, 4), "float32") y_type = relay.TensorType((3, 1), "float32") # We need to generate inputs far apart to get correct numerical gradients # (otherwise adding epsilon may change comparison result). The gradient # should always be zero for both inputs. inputs = [ np.random.choice([-1, 1], size=x_type.concrete_shape).astype(x_type.dtype), np.random.choice([-2, 2], size=y_type.concrete_shape).astype(y_type.dtype), ] x = relay.var("x", type_annotation=x_type) y = relay.var("y", type_annotation=y_type) fwd_func = relay.Function([x, y], relay.not_equal(x, y)) check_grad(fwd_func, inputs=inputs, test_inputs=inputs, eps=1e-6) def test_strided_slice_grad(): def check(sh, dtype, begin, end, strides, slice_mode): x = relay.var("x", shape=sh, dtype=dtype) f = relay.Function( [x], relay.strided_slice(x, begin=begin, end=end, strides=strides, slice_mode=slice_mode), ) check_grad(f) check((2, 3, 4), "float32", (0, 1, 0), (-1, -1, 1), (1, 1, 1), "size") check((2, 3, 4), "float32", (0, 1, 0), (2, 3, 1), (1, 1, 1), "end") # check that strides are properly ignored when using "size" mode check((2, 3, 4), "float32", (0, 0, 0), (-1, -1, -1), (1, 1, 2), "size") check((2, 3, 4), "float32", (0, 0, 0), (2, 3, 4), (1, 1, 2), "end") if __name__ == "__main__": pytest.main()