# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import numpy as np from tvm import relay def test_tflite_same_io_qnn_params(): data_dtype = "uint8" x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.00784314, "float32"), lhs_zero_point=relay.const(127, "int32"), rhs_scale=relay.const(0.00784314, "float32"), rhs_zero_point=relay.const(127, "int32"), output_scale=relay.const(0.00784314, "float32"), output_zero_point=relay.const(127, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_datas = [ np.array((140, 153, 165, 178)).reshape((1, 4)), np.array((25, 153, 178, 216)).reshape((1, 4)), np.array((25, 153, 216, 165)).reshape((1, 4)), ] y_datas = [ np.array((204, 178, 165, 140)).reshape((1, 4)), np.array((204, 178, 191, 25)).reshape((1, 4)), np.array((204, 178, 25, 191)).reshape((1, 4)), ] golden_outputs = [ np.array((217, 204, 203, 191)).reshape((1, 4)), np.array((102, 204, 242, 114)).reshape((1, 4)), np.array((102, 204, 114, 229)).reshape((1, 4)), ] for i in range(0, 3): x_data = x_datas[i] y_data = y_datas[i] golden_output = golden_outputs[i] op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) def test_tflite_different_io_qnn_params(): data_dtype = "uint8" x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.0156863, "float32"), lhs_zero_point=relay.const(127, "int32"), rhs_scale=relay.const(0.0117647, "float32"), rhs_zero_point=relay.const(85, "int32"), output_scale=relay.const(0.0235294, "float32"), output_zero_point=relay.const(128, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_datas = [ np.array((76, 140, 153, 172)).reshape((1, 4)), np.array((133, 140, 146, 153)).reshape((1, 4)), np.array((76, 140, 172, 146)).reshape((1, 4)), ] y_datas = [ np.array((136, 119, 128, 17)).reshape((1, 4)), np.array((136, 119, 111, 94)).reshape((1, 4)), np.array((136, 119, 17, 128)).reshape((1, 4)), ] golden_outputs = [ np.array((120, 154, 167, 124)).reshape((1, 4)), np.array((158, 154, 154, 150)).reshape((1, 4)), np.array((120, 154, 124, 163)).reshape((1, 4)), ] for i in range(0, 3): x_data = x_datas[i] y_data = y_datas[i] golden_output = golden_outputs[i] op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) def test_saturation(): # Same params data_dtype = "uint8" x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.125, "float32"), lhs_zero_point=relay.const(0, "int32"), rhs_scale=relay.const(0.125, "float32"), rhs_zero_point=relay.const(0, "int32"), output_scale=relay.const(0.125, "float32"), output_zero_point=relay.const(0, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] mod = relay.transform.InferType()(mod) x_data = np.array((255, 1, 1, 0)).reshape((1, 4)) y_data = np.array((255, 255, 128, 0)).reshape((1, 4)) golden_output = np.array((255, 255, 129, 0)).reshape((1, 4)) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) # Same params, different scale z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.125, "float32"), lhs_zero_point=relay.const(0, "int32"), rhs_scale=relay.const(0.125, "float32"), rhs_zero_point=relay.const(0, "int32"), output_scale=relay.const(0.25, "float32"), output_zero_point=relay.const(0, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 1, 1, 0)).reshape((1, 4)) y_data = np.array((255, 255, 127, 0)).reshape((1, 4)) golden_output = np.array((255, 129, 65, 0)).reshape((1, 4)) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) # Same io params, different output scale z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.125, "float32"), lhs_zero_point=relay.const(0, "int32"), rhs_scale=relay.const(0.125, "float32"), rhs_zero_point=relay.const(0, "int32"), output_scale=relay.const(0.25, "float32"), output_zero_point=relay.const(0, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 1, 1, 0)).reshape((1, 4)) y_data = np.array((255, 255, 127, 0)).reshape((1, 4)) golden_output = np.array((255, 129, 65, 0)).reshape((1, 4)) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) # All params different z = relay.qnn.op.add( lhs=x, rhs=y, lhs_scale=relay.const(0.5, "float32"), lhs_zero_point=relay.const(0, "int32"), rhs_scale=relay.const(0.25, "float32"), rhs_zero_point=relay.const(0, "int32"), output_scale=relay.const(0.125, "float32"), output_zero_point=relay.const(0, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 0, 1, 0)).reshape((1, 4)) y_data = np.array((0, 128, 64, 0)).reshape((1, 4)) golden_output = np.array((255, 255, 132, 0)).reshape((1, 4)) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) if __name__ == "__main__": test_tflite_same_io_qnn_params() test_tflite_different_io_qnn_params() test_saturation()