# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import numpy as np from tvm import relay def qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp, data_dtype="uint8"): # all x, y and golden outputs should be of the same length assert len(x_datas) == len(y_datas) assert len(y_datas) == len(golden_outputs) x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) lhs_scale = relay.const(scale_and_zp["lhs_scale"], "float32") lhs_zp = relay.const(scale_and_zp["lhs_zp"], "int32") rhs_scale = relay.const(scale_and_zp["rhs_scale"], "float32") rhs_zp = relay.const(scale_and_zp["rhs_zp"], "int32") output_scale = relay.const(scale_and_zp["output_scale"], "float32") output_zp = relay.const(scale_and_zp["output_zp"], "int32") z = relay.qnn.op.subtract( lhs=x, rhs=y, lhs_scale=lhs_scale, lhs_zero_point=lhs_zp, rhs_scale=rhs_scale, rhs_zero_point=rhs_zp, output_scale=output_scale, output_zero_point=output_zp, ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] for i in range(0, len(x_datas)): x_data = x_datas[i] y_data = y_datas[i] golden_output = golden_outputs[i] op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) def test_tflite_same_io_qnn_params(): scale_and_zp = { "lhs_scale": 0.00784314, "lhs_zp": 127, "rhs_scale": 0.00784314, "rhs_zp": 127, "output_scale": 0.00784314, "output_zp": 127, } x_datas = [ np.array((140, 153, 165, 178)).reshape((1, 4)), np.array((25, 153, 178, 216)).reshape((1, 4)), np.array((25, 153, 216, 165)).reshape((1, 4)), ] y_datas = [ np.array((204, 178, 165, 140)).reshape((1, 4)), np.array((204, 178, 191, 25)).reshape((1, 4)), np.array((204, 178, 25, 191)).reshape((1, 4)), ] golden_outputs = [ np.array((63, 102, 127, 165)).reshape((1, 4)), np.array((0, 102, 114, 255)).reshape((1, 4)), np.array((0, 102, 255, 101)).reshape((1, 4)), ] qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp) def test_tflite_different_io_qnn_params(): scale_and_zp = { "lhs_scale": 0.0156863, "lhs_zp": 127, "rhs_scale": 0.0117647, "rhs_zp": 85, "output_scale": 0.0235294, "output_zp": 128, } x_datas = [ np.array((76, 140, 153, 172)).reshape((1, 4)), np.array((133, 140, 146, 153)).reshape((1, 4)), np.array((76, 140, 172, 146)).reshape((1, 4)), ] y_datas = [ np.array((136, 119, 128, 17)).reshape((1, 4)), np.array((136, 119, 111, 94)).reshape((1, 4)), np.array((136, 119, 17, 128)).reshape((1, 4)), ] golden_outputs = [ np.array((68, 120, 123, 192)).reshape((1, 4)), np.array((106, 120, 128, 140)).reshape((1, 4)), np.array((68, 120, 192, 119)).reshape((1, 4)), ] qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp) def test_saturation(): # Same params scale_and_zp = { "lhs_scale": 0.125, "lhs_zp": 0, "rhs_scale": 0.125, "rhs_zp": 0, "output_scale": 0.125, "output_zp": 0, } x_data = [np.array((255, 1, 1, 0)).reshape((1, 4))] y_data = [np.array((255, 255, 128, 0)).reshape((1, 4))] golden_output = [np.array((0, 0, 0, 0)).reshape((1, 4))] qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp) # Same params, different scale scale_and_zp = { "lhs_scale": 0.125, "lhs_zp": 0, "rhs_scale": 0.125, "rhs_zp": 0, "output_scale": 0.25, "output_zp": 0, } x_data = [np.array((255, 1, 200, 0)).reshape((1, 4))] y_data = [np.array((255, 255, 127, 0)).reshape((1, 4))] golden_output = [np.array((0, 0, 36, 0)).reshape((1, 4))] qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp) # All params different scale_and_zp = { "lhs_scale": 0.5, "lhs_zp": 0, "rhs_scale": 0.25, "rhs_zp": 0, "output_scale": 0.125, "output_zp": 0, } x_data = [np.array((255, 0, 1, 0)).reshape((1, 4))] y_data = [np.array((0, 128, 64, 0)).reshape((1, 4))] golden_output = [np.array((255, 0, 0, 0)).reshape((1, 4))] qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp) if __name__ == "__main__": test_tflite_same_io_qnn_params() test_tflite_different_io_qnn_params() test_saturation()