# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm from tvm import relay from tvm.relay import create_executor, transform from tvm.relay.testing import rand, run_infer_type import tvm.testing from tvm.testing import assert_allclose def test_tc(): """Simple testcase, check that transformation typechecks.""" mod = tvm.IRModule() shape = (20, 20) dtype = "float32" t = relay.TensorType(shape, dtype) x1 = relay.var("x1", t) x2 = relay.var("x2", t) # f(x1,x2) = (x1-x2)*x2 y = relay.Function([x1, x2], (x1 - x2) * x2) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) # function input/output types should remain the same assert mod["main"].checked_type == relay.FuncType([t, t], t) def test_add(): """Simple add testcase. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) # f(x) = x+x y = relay.Function([x], x + x) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + x.numpy()) def test_add_tuple(): """Add elements of tuple. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" tensor_type = relay.TensorType(shape, dtype) t = relay.TupleType([tensor_type, tensor_type]) x = relay.var("x", t) # f((x1,x2)) = x1 + x2 y = relay.Function([x], relay.TupleGetItem(x, 0) + relay.TupleGetItem(x, 1)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) mod = tvm.transform.PrintIR(show_meta_data=True)(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], tensor_type) x = (rand(dtype, *shape), rand(dtype, *shape)) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x[0].numpy() + x[1].numpy()) def test_mult(): """Simple multiplication testcase. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (15, 15) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) # f(x) = x*x y = relay.Function([x], x * x) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() * x.numpy()) def test_ret_tuple(): """Test tuple return type. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) # f(x) = (x,x) func = relay.Function([x], relay.Tuple([x, x * relay.const(2.0)])) func = run_infer_type(func) mod["main"] = func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) func = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], relay.TupleType([t, t])) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(func)(x) assert_allclose(y[0].numpy(), x.numpy()) assert_allclose(y[1].numpy(), x.numpy() * 2.0) def test_add_broadcast(): """Test adding matrices of different size. Check types and semantic equivalence.""" mod = tvm.IRModule() shape1 = (3, 4, 1) shape2 = (1, 5) dtype = "float32" t1 = relay.TensorType(shape1, dtype) t2 = relay.TensorType(shape2, dtype) x1 = relay.var("x1", t1) x2 = relay.var("x2", t2) func = relay.Function([x1, x2], x1 + x2) func = run_infer_type(func) mod["main"] = func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) func = mod["main"] x1_np = rand(dtype, *shape1).numpy() x2_np = rand(dtype, *shape2).numpy() expected_forward = x1_np + x2_np expected_forward_type = relay.TensorType(expected_forward.shape, dtype) assert mod["main"].checked_type == relay.FuncType([t1, t2], expected_forward_type) forward = create_executor(mod=mod).evaluate(func)(x1_np, x2_np) assert_allclose(forward.numpy(), expected_forward) def test_reverse_ad_identity(): """Simple test with reverse mode ad.""" # of f(x) = x mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t], relay.TupleType([t, relay.TupleType([t])]) ) x = rand(dtype, *shape) (forward), (grad,) = create_executor(mod=mod).evaluate(back_func)(x) assert_allclose(forward.numpy(), x.numpy()) assert_allclose(grad.numpy(), np.ones_like(x.numpy())) def test_multivar_reverse_ad(): """Simple test with multivariate reverse mode ad.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_partial_eval(): """Test transformation following reverse mode ad and PartialEval""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) func = relay.Function([], relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) back_func = mod["main"] transform.PartialEvaluate()(mod) def test_after_partial_eval(): """Test transformation following reverse mode ad and PartialEval""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func back_func = mod["main"] seq = tvm.transform.Sequential( [ transform.PartialEvaluate(), transform.InferType(), transform.LazyGradientInit(), transform.InferType(), transform.DeadCodeElimination(), transform.InferType(), ] ) mod = seq(mod) assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_before_partial_eval(): """Test transformation before PartialEval""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], x * y) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func seq = tvm.transform.Sequential( [ transform.LazyGradientInit(), transform.PartialEvaluate(), transform.InferType(), transform.DeadCodeElimination(), transform.InferType(), ] ) mod = seq(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_zeros(): """Simple test using "zeros" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.zeros(shape, dtype)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy()) def test_ones(): """Simple test using "ones" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.ones(shape, dtype)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + np.ones_like(x.numpy())) def test_zeros_like(): """Simple test using "zeros_like" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.zeros_like(x)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy()) def test_ones_like(): """Simple test using "ones_like" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.ones_like(x)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + np.ones_like(x.numpy())) if __name__ == "__main__": import sys import pytest sys.exit(pytest.main([__file__] + sys.argv[1:]))