# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import itertools import numpy as np import scipy.sparse as sp import tvm from tvm.ir import IRModule from tvm import relay def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"): Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) assert candidate_blocks.shape[0] == M // BS_R * N // BS_C chosen_blocks = candidate_blocks[ np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False) ] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r : r + BS_R, c : c + BS_C] = np.random.randn(BS_R, BS_C) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.data.size >= nnz assert s.indices.shape == (num_blocks,) assert s.indptr.shape == (M // BS_R + 1,) return s def run_func(func, params, x): with tvm.transform.PassContext(opt_level=3): graph, lib, new_params = relay.build(func, "llvm", params=params) from tvm.contrib import graph_executor dev = tvm.cpu(0) dtype = "float32" m = graph_executor.create(graph, lib, dev) # set inputs m.set_input("data", tvm.nd.array(x.astype(dtype))) m.set_input(**new_params) # execute m.run() # get outputs tvm_output = m.get_output(0) return tvm_output.numpy() def test_bsr_sparse_dense(): data = relay.var("data", shape=(1, 128), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(768, 128), dtype="float32") y = relay.nn.dense(x, w) z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = {"weight": tvm.nd.array(random_bsr_matrix(768, 128, 32, 1, 0.1).todense())} x_np = np.random.randn(1, 128).astype("float32") # dense output dense_output = run_func(func, params, x_np) # sparse sparse_func, params = relay.data_dep_optimization.bsr_dense.convert(func, params, (32, 1), 0.2) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_bsr_sparse_dense()