# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import numpy as np @tvm.register_extension class MyTensorView(object): _tvm_tcode = tvm._ffi.runtime_ctypes.ArgTypeCode.DLTENSOR_HANDLE def __init__(self, arr): self.arr = arr @property def _tvm_handle(self): return self.arr._tvm_handle def test_dltensor_compatible(): dtype = "int64" n = te.var("n") Ab = tvm.tir.decl_buffer((n,), dtype) i = te.var("i") ib = tvm.tir.ir_builder.create() A = ib.buffer_ptr(Ab) with ib.for_range(0, n - 1, "i") as i: A[i + 1] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "arange")) f = tvm.build(mod, target="stackvm") a = tvm.nd.array(np.zeros(10, dtype=dtype)) aview = MyTensorView(a) f(aview) np.testing.assert_equal(a.numpy(), np.arange(a.shape[0])) if __name__ == "__main__": test_dltensor_compatible()