# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te, runtime import numpy as np import json from tvm import rpc from tvm import relay from tvm.contrib import utils, graph_executor @tvm.testing.requires_llvm def test_graph_simple(): n = 4 A = te.placeholder((n,), name="A") B = te.compute(A.shape, lambda *i: A(*i) + 1.0, name="B") s = te.create_schedule(B.op) node0 = {"op": "null", "name": "x", "inputs": []} node1 = { "op": "tvm_op", "name": "add", "inputs": [[0, 0, 0]], "attrs": {"func_name": "myadd", "flatten_data": "1", "num_inputs": "1", "num_outputs": "1"}, } nodes = [node0, node1] arg_nodes = [0] node_row_ptr = [0, 1, 2] outputs = [[1, 0, 0]] shape = (4,) attrs = { "shape": ["list_shape", [shape, shape]], "dltype": ["list_str", ["float32", "float32"]], "storage_id": ["list_int", [0, 1]], } graph = { "nodes": nodes, "arg_nodes": arg_nodes, "node_row_ptr": node_row_ptr, "heads": outputs, "attrs": attrs, } graph = json.dumps(graph) def check_verify(): mlib = tvm.build(s, [A, B], "llvm", name="myadd") mod = graph_executor.create(graph, mlib, tvm.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=a) out = mod.get_output(0, tvm.nd.empty((n,))) np.testing.assert_equal(out.numpy(), a + 1) def check_remote(server): mlib = tvm.build(s, [A, B], "llvm", name="myadd") remote = rpc.connect(server.host, server.port) temp = utils.tempdir() dev = remote.cpu(0) path_dso = temp.relpath("dev_lib.so") mlib.export_library(path_dso) remote.upload(path_dso) mlib = remote.load_module("dev_lib.so") mod = graph_executor.create(graph, mlib, remote.cpu(0)) a = np.random.uniform(size=(n,)).astype(A.dtype) mod.run(x=tvm.nd.array(a, dev)) out = tvm.nd.empty((n,), device=dev) out = mod.get_output(0, out) np.testing.assert_equal(out.numpy(), a + 1) def check_sharing(): x = relay.var("x", shape=(1, 10)) y = relay.var("y", shape=(1, 10)) z = relay.add(x, y) func = relay.Function([x, y], z) x_in = np.ones((1, 10)).astype("float32") params = {"x": x_in} graph, lib, params = relay.build(func, target="llvm", params=params) mod_shared = graph_executor.create(graph, lib, tvm.cpu(0)) mod_shared.load_params(runtime.save_param_dict(params)) num_mods = 10 mods = [graph_executor.create(graph, lib, tvm.cpu(0)) for _ in range(num_mods)] for mod in mods: mod.share_params(mod_shared, runtime.save_param_dict(params)) a = np.random.uniform(size=(1, 10)).astype("float32") for mod in mods: mod.run(y=a) out = mod.get_output(0, tvm.nd.empty((1, 10))) np.testing.assert_equal(out.numpy(), x_in + a) # Explicitly delete the shared module and verify correctness. del mod_shared for mod in mods: mod.run(y=a) out = mod.get_output(0, tvm.nd.empty((1, 10))) np.testing.assert_equal(out.numpy(), x_in + a) del mod check_verify() check_remote(rpc.Server("127.0.0.1")) check_sharing() def test_load_unexpected_params(): # Test whether graph_executor.load_params works if parameters # are provided that are not an expected input. mod = tvm.IRModule() params = {} x = relay.var("x", shape=(1, 10)) y = relay.var("y", shape=(1, 10)) z = relay.add(x, y) mod["main"] = relay.Function([x, y], z) graph_module = relay.build(mod, target="llvm", params=params) rt_mod = tvm.contrib.graph_executor.create( graph_module.get_graph_json(), graph_module.get_lib(), tvm.cpu(0) ) new_params = graph_module.get_params() new_params.update({"y_unknown": np.ones((1,)).astype("float32")}) rt_mod.load_params(runtime.save_param_dict(new_params)) if __name__ == "__main__": test_graph_simple() test_load_unexpected_params()