# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import re import os import ctypes def test_popcount(): target = "llvm -mtriple=armv7l-none-linux-gnueabihf -mcpu=cortex-a53 -mattr=+neon" def check_correct_assembly(type, elements, counts): n = tvm.runtime.convert(elements) A = te.placeholder(n, dtype=type, name="A") B = te.compute(A.shape, lambda i: tvm.tir.popcount(A[i]), name="B") s = te.create_schedule(B.op) s[B].vectorize(s[B].op.axis[0]) f = tvm.build(s, [A, B], target) # Verify we see the correct number of vpaddl and vcnt instructions in the assembly assembly = f.get_source("asm") matches = re.findall("vpaddl", assembly) assert len(matches) == counts matches = re.findall("vcnt", assembly) assert len(matches) == 1 check_correct_assembly("uint16", 8, 1) check_correct_assembly("uint16", 4, 1) check_correct_assembly("uint32", 4, 2) check_correct_assembly("uint32", 2, 2) check_correct_assembly("uint64", 2, 3) def test_vmlal_s16(): target = "llvm -mtriple=armv7l-none-linux-gnueabihf -mcpu=cortex-a53 -mattr=+neon" def check_correct_assembly(N): K = te.size_var("K") A = te.placeholder((K, N), dtype="int8", name="A") B = te.placeholder((K, N), dtype="int8", name="B") k = te.reduce_axis((0, K)) C = te.compute( (N,), lambda n: te.sum(A[k, n].astype("int32") * B[k, n].astype("int32"), axis=[k]), name="C", ) s = te.create_schedule(C.op) s[C].vectorize(s[C].op.axis[0]) f = tvm.build(s, [A, B, C], target) # Verify we see the correct number of vmlal.s16 instructions assembly = f.get_source("asm") matches = re.findall("vmlal.s16", assembly) assert len(matches) == N // 4 check_correct_assembly(8) check_correct_assembly(16) check_correct_assembly(32) check_correct_assembly(64) def check_broadcast_correct_assembly(N): K = te.size_var("K") A = te.placeholder((K, N), dtype="int8", name="A") B = te.placeholder((K,), dtype="int8", name="B") k = te.reduce_axis((0, K)) C = te.compute( (N,), lambda n: te.sum(A[k, n].astype("int32") * B[k].astype("int32"), axis=[k]), name="C", ) s = te.create_schedule(C.op) s[C].vectorize(s[C].op.axis[0]) f = tvm.build(s, [A, B, C], target) # Verify we see the correct number of vmlal.s16 instructions assembly = f.get_source("asm") matches = re.findall("vmlal.s16", assembly) assert len(matches) == N // 4 check_broadcast_correct_assembly(8) check_broadcast_correct_assembly(16) check_broadcast_correct_assembly(32) check_broadcast_correct_assembly(64) if __name__ == "__main__": test_popcount() test_vmlal_s16()