# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """codegen related to bool types""" import tvm from tvm import te import numpy as np import tvm.testing arr_size = tvm.testing.parameter(32) @tvm.testing.fixture def compute(arr_size): A = te.placeholder((arr_size,), name="A") B = te.placeholder((arr_size,), name="B") C = te.compute(A.shape, lambda *i: A(*i) > B(*i), name="C") D = te.compute(C.shape, lambda *i: tvm.tir.all(C(*i), A(*i) > 1).astype("float32"), name="D") return [A, B, C, D] @tvm.testing.fixture def schedule(target, compute): target = tvm.target.Target(target) A, B, C, D = compute if target.kind.name == "llvm": s = te.create_schedule(D.op) xo, xi = s[C].split(C.op.axis[0], factor=4) xo1, xo2 = s[C].split(xo, factor=13) s[C].parallel(xo2) else: s = te.create_schedule(D.op) for stage in [C, D]: xo, xi = s[stage].split(stage.op.axis[0], factor=4) s[stage].bind(xo, te.thread_axis("blockIdx.x")) s[stage].bind(xi, te.thread_axis("threadIdx.x")) return s @tvm.testing.uses_gpu def test_cmp_load_store(target, dev, arr_size, compute, schedule): A, B, _, D = compute f = tvm.build(schedule, [A, B, D], target) a_np = np.random.uniform(size=arr_size).astype(A.dtype) b_np = np.random.uniform(size=arr_size).astype(B.dtype) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) d = tvm.nd.array(np.zeros(arr_size, dtype=D.dtype), dev) f(a, b, d) np.testing.assert_equal( d.numpy(), np.logical_and(a_np > b_np, a_np > 1).astype("float32"), ) if __name__ == "__main__": sys.exit(pytest.main(sys.argv))