# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.contrib import utils import numpy as np import tvm.testing @tvm.testing.requires_gpu def test_large_uint_imm(): value = (1 << 63) + 123 other = tvm.tir.const(3, "uint64") n = 12 num_thread = 2 A = te.compute((n,), lambda *i: tvm.tir.const(value, "uint64") + other, name="A") s = te.create_schedule(A.op) xo, xi = s[A].split(A.op.axis[0], factor=num_thread) s[A].bind(xi, te.thread_axis("threadIdx.x")) s[A].bind(xo, te.thread_axis("blockIdx.x")) def check_target(device): if not tvm.testing.device_enabled(device): return dev = tvm.device(device, 0) f = tvm.build(s, [A], device) # launch the kernel. a = tvm.nd.empty((n,), dtype=A.dtype, device=dev) f(a) assert a.numpy()[0] == value + 3 check_target("cuda") check_target("vulkan -from_device=0") @tvm.testing.requires_gpu def test_add_pipeline(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(), name="C") D = te.compute(A.shape, lambda *i: C(*i) + 1, name="D") s = te.create_schedule(D.op) # GPU schedule have to split by gridIdx and threadIdx num_thread = 256 xo, xi = s[C].split(C.op.axis[0], factor=num_thread) s[C].bind(xi, te.thread_axis("threadIdx.x")) s[C].bind(xo, te.thread_axis("blockIdx.x")) xo, xi = s[D].split(D.op.axis[0], factor=num_thread) s[D].bind(xi, te.thread_axis("threadIdx.x")) s[D].bind(xo, te.thread_axis("blockIdx.x")) def check_target(device, host="stackvm"): if not tvm.testing.device_enabled(device) or not tvm.testing.device_enabled(host): return dev = tvm.device(device, 0) mhost = tvm.driver.build(s, [A, B, D], target=tvm.target.Target(device, host)) f = mhost.entry_func # launch the kernel. n = 1027 a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=()).astype(B.dtype), dev) d = tvm.nd.array(np.zeros(n, dtype=D.dtype), dev) f(a, b, d) tvm.testing.assert_allclose(d.numpy(), a.numpy() + b.numpy() + 1) check_target("cuda", host="llvm") check_target("nvptx", host="llvm") check_target("vulkan", host="llvm") check_target("rocm", host="llvm") if __name__ == "__main__": test_large_uint_imm() test_add_pipeline()