# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm import tvm.testing from tvm import te from tvm.topi.nn.pooling import pool2d def test_tensor(): m = te.size_var("m") n = te.size_var("n") l = te.size_var("l") A = te.placeholder((m, l), name="A") B = te.placeholder((n, l), name="B") T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) print(T) print(T.op.body) assert tuple(T.shape) == (m, n, l) assert isinstance(A.op, tvm.te.PlaceholderOp) assert A == A assert T.op.output(0) == T assert T.op.output(0).__hash__() == T.__hash__() d = {T.op.output(0): 1} assert d[T] == 1 assert T[0][0][0].astype("float16").dtype == "float16" def test_rank_zero(): m = te.size_var("m") A = te.placeholder((m,), name="A") scale = te.placeholder((), name="s") k = te.reduce_axis((0, m), name="k") T = te.compute((), lambda: te.sum(A[k] * scale(), axis=k)) print(T) print(T.op.body) assert tuple(T.shape) == () def test_conv1d(): n = te.size_var("n") A = te.placeholder((n + 2), name="A") def computeB(ii): i = ii + 1 return A[i - 1] + A[i] + A[i + 1] B = te.compute(n, computeB) def test_tensor_slice(): n = te.size_var("n") A = te.compute((n, n), lambda i, j: 1) B = te.compute((n,), lambda i: A[0][i] + A[0][i]) def test_tensor_reduce_multi_axis(): m = te.size_var("m") n = te.size_var("n") A = te.placeholder((m, n), name="A") k1 = te.reduce_axis((0, n), "k") k2 = te.reduce_axis((0, m), "k") C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=(k1, k2))) C = te.compute((1,), lambda _: te.sum(A[k1, k2], axis=[k1, k2])) def test_tensor_comm_reducer(): m = te.size_var("m") n = te.size_var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), "k") mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir.const(0, dtype=t)) C = te.compute((m,), lambda i: mysum(A[i, k], axis=k)) def test_tensor_comm_reducer_overload(): m = te.size_var("m") n = te.size_var("n") mysum = te.comm_reducer(lambda x, y: x + y, lambda t: tvm.tir.const(0, dtype=t)) sum_res = mysum(m, n) def test_tensor_reduce(): m = te.size_var("m") n = te.size_var("n") l = te.size_var("l") A = te.placeholder((m, l), name="A") B = te.placeholder((n, l), name="B") T = te.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k]) rv = te.reduce_axis((0, A.shape[1]), "k") C = te.compute((m, n), lambda i, j: te.sum(T(i, j, rv + 1), axis=rv)) # json load save C_json = tvm.ir.save_json(C) C_loaded = tvm.ir.load_json(C_json) assert isinstance(C_loaded, te.tensor.Tensor) assert str(C_loaded) == str(C) def test_tensor_reduce_multiout_with_cond(): def fcombine(x, y): return x[0] + y[0], x[1] + y[1] def fidentity(t0, t1): return tvm.tir.const(0, t0), tvm.tir.const(1, t1) mysum = te.comm_reducer(fcombine, fidentity, name="mysum") m = te.var("m") n = te.var("n") idx = te.placeholder((m, n), name="idx", dtype="int32") val = te.placeholder((m, n), name="val", dtype="int32") k = te.reduce_axis((0, n), "k") cond = te.floormod(k, 2) == 0 T0, T1 = te.compute((m,), lambda i: mysum((idx[i, k], val[i, k]), axis=k, where=cond), name="T") def test_tensor_compute1(): m = 1024 factor = 16 dtype = "float32" def intrin_vadd(n): x = te.placeholder((n,)) y = te.placeholder((n,)) z = te.compute(x.shape, lambda i: x[i] + y[i]) def intrin_func(ins, outs): ib = tvm.tir.ir_builder.create() ib.emit( tvm.tir.call_extern( outs[0].dtype, "vadd", ins[0].access_ptr("r"), ins[1].access_ptr("r"), outs[0].access_ptr("wr"), ) ) return ib.get() return te.decl_tensor_intrin(z.op, intrin_func, default_buffer_params={"offset_factor": n}) vadd = intrin_vadd(factor) A = te.placeholder((m // factor, factor), name="A", dtype=dtype) B = te.placeholder((m // factor, factor), name="B", dtype=dtype) C = te.compute((m // factor, factor), lambda i: vadd(A[i, 0:factor], B[i, 0:factor])) s = te.create_schedule(C.op) stmt = tvm.lower(s, [A, B, C])["main"].body assert isinstance(stmt.body, tvm.tir.Evaluate) def test_tensor_compute2(): M = 2048 N = 1024 L = 1024 factor = 16 factor1 = 32 factor2 = 32 dtype = "float32" def intrin_gemm(m, n, l): k = te.reduce_axis((0, l)) x = te.placeholder((m, l)) y = te.placeholder((n, l)) # in theory, no relation z = te.compute((m, n), lambda i, j: te.sum(x[i][k] * y[j][k], axis=k)) def intrin_func(ins, outs): x_ptr = ins[0].access_ptr("r") y_ptr = ins[1].access_ptr("r") z_ptr = outs[0].access_ptr("w") body = tvm.tir.call_packed("gemv", x_ptr, y_ptr, z_ptr, m, n, l) reset = tvm.tir.call_packed("fill_zero", z_ptr, m, n) update = tvm.tir.call_packed("gemv_add", x_ptr, y_ptr, z_ptr, m, n, l) return body, reset, update return te.decl_tensor_intrin(z.op, intrin_func, default_buffer_params={"offset_factor": n}) vgemm = intrin_gemm(factor1, factor2, factor) A = te.placeholder((M // factor1, L // factor, factor1, factor), name="A", dtype=dtype) B = te.placeholder((N // factor2, L // factor, factor2, factor), name="B", dtype=dtype) k = te.reduce_axis((0, L // factor), name="k") C = te.compute( (M // factor1, N // factor2, factor1, factor2), lambda i, j: vgemm( A[i, k, 0:factor1, 0:factor], B[j, k, 0:factor2, 0:factor], reduce_axis=k ), ) s = te.create_schedule(C.op) stmt = tvm.lower(s, [A, B, C])["main"].body assert isinstance(stmt.body.body[0], tvm.tir.Evaluate) assert isinstance(stmt.body.body[1].body, tvm.tir.Evaluate) def test_tensor_scan(): m = te.size_var("m") n = te.size_var("n") x = te.placeholder((m, n)) s = te.placeholder((m, n)) res = tvm.te.scan( te.compute((1, n), lambda _, i: x[0, i]), te.compute((m, n), lambda t, i: s[t - 1, i] + x[t, i]), s, ) assert tuple(res.shape) == (m, n) def test_scan_multi_out(): m = te.size_var("m") n = te.size_var("n") x1 = te.placeholder((m, n)) s1 = te.placeholder((m, n)) x2 = te.placeholder((m, n)) s2 = te.placeholder((m, n)) s1_init = te.compute((1, n), lambda _, i: x1[0, i]) s2_init = te.compute((1, n), lambda _, i: x2[0, i]) s1_update = te.compute((m, n), lambda t, i: s1[t - 1, i] + s2[t - 1, i] + x1[t, i]) s2_update = te.compute((m, n), lambda t, i: x2[t, i] + s2[t - 1, i]) r0, r1 = tvm.te.scan([s1_init, s2_init], [s1_update, s2_update], [s1, s2]) assert r0.value_index == 0 assert r1.value_index == 1 json_str = tvm.ir.save_json(r0.op) zz = tvm.ir.load_json(json_str) assert isinstance(zz, tvm.te.ScanOp) def test_extern(): m = te.size_var("m") A = te.placeholder((m,), name="A") def extern_func(ins, outs): assert isinstance(ins[0], tvm.te.schedule.Buffer) return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, m) B = te.extern((m,), [A], extern_func) assert tuple(B.shape) == (m,) def test_extern_multi_out(): m = te.size_var("m") A = te.placeholder((m,), name="A") B = te.compute((m,), lambda i: A[i] * 10) def extern_func(ins, outs): assert isinstance(ins[0], tvm.te.schedule.Buffer) return tvm.tir.call_packed("myadd", ins[0].data, outs[0].data, outs[1].data, m) res = te.extern([A.shape, A.shape], [A, B], extern_func) assert len(res) == 2 assert res[1].value_index == 1 def test_tuple_inputs(): m = te.size_var("m") n = te.size_var("n") A0 = te.placeholder((m, n), name="A0") A1 = te.placeholder((m, n), name="A1") T0, T1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="T") s = te.create_schedule(T0.op) for i in range(len(T0.shape)): assert T0.shape[i] == T1.shape[i] assert T0.op == T1.op assert T0.value_index == 0 assert T1.value_index == 1 def test_tuple_with_different_deps(): m = te.size_var("m") n = te.size_var("n") A0 = te.placeholder((m, n), name="A1") A1 = te.placeholder((m, n), name="A2") B0, B1 = te.compute((m, n), lambda i, j: (A0[i, j] * 2, A1[i, j] * 3), name="B") C = te.compute((m, n), lambda i, j: B0[i, j] + 4, name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=10) s[B0.op].compute_at(s[C], xo) sch = s.normalize() bounds = tvm.te.schedule.InferBound(sch) stmt = tvm.te.schedule.ScheduleOps(sch, bounds) def get_B1_realize(x): if ( isinstance(x, tvm.tir.ProducerRealize) and x.producer.op == B1.op and x.producer.value_index == 1 ): ret.append(x) ret = [] tvm.tir.stmt_functor.post_order_visit(stmt, get_B1_realize) assert stmt.producer == C and len(ret) == 1 def test_tensor_inputs(): x = te.placeholder((1,), name="x") y = te.compute(x.shape, lambda i: x[i] + x[i]) assert tuple(y.op.input_tensors) == (x,) def test_tensor_pool(): def intrin_pool(): A = te.placeholder((64, 16, 16), name="A") kh = te.reduce_axis((0, 3), name="kh") kw = te.reduce_axis((0, 3), name="kw") P = te.compute( (64, 14, 14), lambda c, oh, ow: tvm.te.max(A[c, oh + kh, ow + kw], axis=[kh, kw]), name="p", ) def intrin_func(ins, outs): dinp = ins[0] dout = outs[0] return tvm.tir.call_packed("op", dinp, dout) return te.decl_tensor_intrin(P.op, intrin_func, default_buffer_params={"offset_factor": 1}) A = te.placeholder((1, 64, 16, 16), name="A") P = pool2d( data=A, kernel=(3, 3), stride=(1, 1), dilation=(1, 1), padding=(0, 0, 0, 0), pool_type="max" ) s = te.create_schedule(P.op) _, oh, _, _ = P.op.axis intrin = intrin_pool() s[P].tensorize(oh, intrin) tvm.lower(s, [A, P]) def test_tensor_scalar_mixed(): # test te with tensor and scalar a = np.array(np.random.uniform(size=(10,)), "float32") b = np.array(np.random.uniform(size=(1))[0], "float32") c = np.array(np.random.uniform(size=(10,)), "float32") @tvm.register_func("tvm.test_tensor_scalar_scale") def my_scale(tensor, scalar, out): out_np = tensor.numpy() * scalar.numpy() tvm.nd.array(out_np).copyto(out) A = te.placeholder(a.shape, name="A") B = te.placeholder(b.shape, name="B") C = te.extern( a.shape, [A, B], lambda ins, outs: tvm.tir.call_packed( "tvm.test_tensor_scalar_scale", ins[0], ins[1], outs[0] ), name="C", ) s = te.create_schedule(C.op) f = tvm.build(s, [A, B, C], "llvm") ta = tvm.nd.array(a) tb = tvm.nd.array(b) tc = tvm.nd.array(c) f(ta, tb, tc) tvm.testing.assert_allclose(a * b, tc.numpy()) def test_tensor_scalar(): # test te with scalar shape a = np.array(np.random.uniform(size=(1))[0], "float32") b = np.array(0.0, "float32") @tvm.register_func("tvm.test_tensor_scalar_copy") def mycopy(x, y): x.copyto(y) A = te.placeholder(a.shape, name="A") B = te.extern( a.shape, [A], lambda ins, outs: tvm.tir.call_packed("tvm.test_tensor_scalar_copy", ins[0], outs[0]), name="B", ) s = te.create_schedule(B.op) f = tvm.build(s, [A, B], "llvm") ta = tvm.nd.array(a) tb = tvm.nd.array(b) f(ta, tb) tvm.testing.assert_allclose(ta.numpy(), tb.numpy()) if __name__ == "__main__": test_tensor() test_rank_zero() test_conv1d() test_tensor_slice() test_tensor_reduce_multi_axis() test_tensor_comm_reducer() test_tensor_comm_reducer_overload() test_tensor_reduce() test_tensor_reduce_multiout_with_cond() test_tensor_compute1() test_tensor_compute2() test_tensor_scan() test_scan_multi_out() test_extern() test_extern_multi_out() test_tuple_inputs() test_tuple_with_different_deps() test_tensor_inputs() test_tensor_pool() test_tensor_scalar_mixed() test_tensor_scalar()