/* * SPDX-License-Identifier: Apache-2.0 * * The OpenSearch Contributors require contributions made to * this file be licensed under the Apache-2.0 license or a * compatible open source license. */ /* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Modifications Copyright OpenSearch Contributors. See * GitHub history for details. */ package org.opensearch.common.geo; import org.apache.lucene.spatial.prefix.tree.GeohashPrefixTree; import org.apache.lucene.spatial.prefix.tree.QuadPrefixTree; import org.apache.lucene.util.SloppyMath; import org.opensearch.OpenSearchParseException; import org.opensearch.common.unit.DistanceUnit; import org.opensearch.common.xcontent.LoggingDeprecationHandler; import org.opensearch.core.xcontent.NamedXContentRegistry; import org.opensearch.core.xcontent.XContentParser; import org.opensearch.core.xcontent.XContentSubParser; import org.opensearch.core.xcontent.MapXContentParser; import org.opensearch.common.xcontent.support.XContentMapValues; import org.opensearch.geometry.ShapeType; import org.opensearch.index.fielddata.FieldData; import org.opensearch.index.fielddata.GeoPointValues; import org.opensearch.index.fielddata.MultiGeoPointValues; import org.opensearch.index.fielddata.NumericDoubleValues; import org.opensearch.index.fielddata.SortedNumericDoubleValues; import org.opensearch.index.fielddata.SortingNumericDoubleValues; import java.io.IOException; import java.util.Collections; import java.util.HashMap; /** * Useful geo utilities * * @opensearch.internal */ public class GeoUtils { private static final String ERR_MSG_INVALID_TOKEN = "token [{}] not allowed"; private static final String ERR_MSG_INVALID_FIELDS = "field must be either [lon|lat], [type|coordinates], or [geohash]"; /** Maximum valid latitude in degrees. */ public static final double MAX_LAT = 90.0; /** Minimum valid latitude in degrees. */ public static final double MIN_LAT = -90.0; /** Maximum valid longitude in degrees. */ public static final double MAX_LON = 180.0; /** Minimum valid longitude in degrees. */ public static final double MIN_LON = -180.0; public static final String LATITUDE = "lat"; public static final String LONGITUDE = "lon"; public static final String GEOHASH = "geohash"; public static final String GEOJSON_TYPE = "type"; public static final String GEOJSON_COORDS = "coordinates"; /** Earth ellipsoid major axis defined by WGS 84 in meters */ public static final double EARTH_SEMI_MAJOR_AXIS = 6378137.0; // meters (WGS 84) /** Earth ellipsoid minor axis defined by WGS 84 in meters */ public static final double EARTH_SEMI_MINOR_AXIS = 6356752.314245; // meters (WGS 84) /** Earth mean radius defined by WGS 84 in meters */ public static final double EARTH_MEAN_RADIUS = 6371008.7714D; // meters (WGS 84) /** Earth axis ratio defined by WGS 84 (0.996647189335) */ public static final double EARTH_AXIS_RATIO = EARTH_SEMI_MINOR_AXIS / EARTH_SEMI_MAJOR_AXIS; /** Earth ellipsoid equator length in meters */ public static final double EARTH_EQUATOR = 2 * Math.PI * EARTH_SEMI_MAJOR_AXIS; /** Earth ellipsoid polar distance in meters */ public static final double EARTH_POLAR_DISTANCE = Math.PI * EARTH_SEMI_MINOR_AXIS; /** rounding error for quantized latitude and longitude values */ public static final double TOLERANCE = 1E-6; /** Returns true if latitude is actually a valid latitude value.*/ public static boolean isValidLatitude(double latitude) { if (Double.isNaN(latitude) || Double.isInfinite(latitude) || latitude < GeoUtils.MIN_LAT || latitude > GeoUtils.MAX_LAT) { return false; } return true; } /** Returns true if longitude is actually a valid longitude value. */ public static boolean isValidLongitude(double longitude) { if (Double.isNaN(longitude) || Double.isInfinite(longitude) || longitude < GeoUtils.MIN_LON || longitude > GeoUtils.MAX_LON) { return false; } return true; } /** * Calculate the width (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the width of cells at level in meters */ public static double geoHashCellWidth(int level) { assert level >= 0; // Geohash cells are split into 32 cells at each level. the grid // alternates at each level between a 8x4 and a 4x8 grid return EARTH_EQUATOR / (1L << ((((level + 1) / 2) * 3) + ((level / 2) * 2))); } /** * Calculate the width (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the width of cells at level in meters */ public static double quadTreeCellWidth(int level) { assert level >= 0; return EARTH_EQUATOR / (1L << level); } /** * Calculate the height (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the height of cells at level in meters */ public static double geoHashCellHeight(int level) { assert level >= 0; // Geohash cells are split into 32 cells at each level. the grid // alternates at each level between a 8x4 and a 4x8 grid return EARTH_POLAR_DISTANCE / (1L << ((((level + 1) / 2) * 2) + ((level / 2) * 3))); } /** * Calculate the height (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the height of cells at level in meters */ public static double quadTreeCellHeight(int level) { assert level >= 0; return EARTH_POLAR_DISTANCE / (1L << level); } /** * Calculate the size (in meters) of geohash cells at a specific level * @param level geohash level must be greater or equal to zero * @return the size of cells at level in meters */ public static double geoHashCellSize(int level) { assert level >= 0; final double w = geoHashCellWidth(level); final double h = geoHashCellHeight(level); return Math.sqrt(w * w + h * h); } /** * Calculate the size (in meters) of quadtree cells at a specific level * @param level quadtree level must be greater or equal to zero * @return the size of cells at level in meters */ public static double quadTreeCellSize(int level) { assert level >= 0; return Math.sqrt(EARTH_POLAR_DISTANCE * EARTH_POLAR_DISTANCE + EARTH_EQUATOR * EARTH_EQUATOR) / (1L << level); } /** * Calculate the number of levels needed for a specific precision. Quadtree * cells will not exceed the specified size (diagonal) of the precision. * @param meters Maximum size of cells in meters (must greater than zero) * @return levels need to achieve precision */ public static int quadTreeLevelsForPrecision(double meters) { assert meters >= 0; if (meters == 0) { return QuadPrefixTree.MAX_LEVELS_POSSIBLE; } else { final double ratio = 1 + (EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio final double width = Math.sqrt((meters * meters) / (ratio * ratio)); // convert to cell width final long part = Math.round(Math.ceil(EARTH_EQUATOR / width)); final int level = Long.SIZE - Long.numberOfLeadingZeros(part) - 1; // (log_2) return (part <= (1L << level)) ? level : (level + 1); // adjust level } } /** * Calculate the number of levels needed for a specific precision. QuadTree * cells will not exceed the specified size (diagonal) of the precision. * @param distance Maximum size of cells as unit string (must greater or equal to zero) * @return levels need to achieve precision */ public static int quadTreeLevelsForPrecision(String distance) { return quadTreeLevelsForPrecision(DistanceUnit.METERS.parse(distance, DistanceUnit.DEFAULT)); } /** * Calculate the number of levels needed for a specific precision. GeoHash * cells will not exceed the specified size (diagonal) of the precision. * @param meters Maximum size of cells in meters (must greater or equal to zero) * @return levels need to achieve precision */ public static int geoHashLevelsForPrecision(double meters) { assert meters >= 0; if (meters == 0) { return GeohashPrefixTree.getMaxLevelsPossible(); } else { final double ratio = 1 + (EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio final double width = Math.sqrt((meters * meters) / (ratio * ratio)); // convert to cell width final double part = Math.ceil(EARTH_EQUATOR / width); if (part == 1) return 1; final int bits = (int) Math.round(Math.ceil(Math.log(part) / Math.log(2))); final int full = bits / 5; // number of 5 bit subdivisions final int left = bits - full * 5; // bit representing the last level final int even = full + (left > 0 ? 1 : 0); // number of even levels final int odd = full + (left > 3 ? 1 : 0); // number of odd levels return even + odd; } } /** * Calculate the number of levels needed for a specific precision. GeoHash * cells will not exceed the specified size (diagonal) of the precision. * @param distance Maximum size of cells as unit string (must greater or equal to zero) * @return levels need to achieve precision */ public static int geoHashLevelsForPrecision(String distance) { return geoHashLevelsForPrecision(DistanceUnit.METERS.parse(distance, DistanceUnit.DEFAULT)); } /** * Normalize longitude to lie within the -180 (exclusive) to 180 (inclusive) range. * * @param lon Longitude to normalize * @return The normalized longitude. */ public static double normalizeLon(double lon) { if (lon > 180d || lon <= -180d) { lon = centeredModulus(lon, 360); } // avoid -0.0 return lon + 0d; } /** * Normalize latitude to lie within the -90 to 90 (both inclusive) range. *

* Note: You should not normalize longitude and latitude separately, * because when normalizing latitude it may be necessary to * add a shift of 180° in the longitude. * For this purpose, you should call the * {@link #normalizePoint(GeoPoint)} function. * * @param lat Latitude to normalize * @return The normalized latitude. * @see #normalizePoint(GeoPoint) */ public static double normalizeLat(double lat) { if (lat > 90d || lat < -90d) { lat = centeredModulus(lat, 360); if (lat < -90) { lat = -180 - lat; } else if (lat > 90) { lat = 180 - lat; } } // avoid -0.0 return lat + 0d; } /** * Normalize the geo {@code Point} for its coordinates to lie within their * respective normalized ranges. *

* Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * * @param point The point to normalize in-place. */ public static void normalizePoint(GeoPoint point) { normalizePoint(point, true, true); } /** * Normalize the geo {@code Point} for the given coordinates to lie within * their respective normalized ranges. *

* You can control which coordinate gets normalized with the two flags. *

* Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * If normalizing latitude but not longitude, it is assumed that * the longitude is in the form x+k*360, with x in ]-180;180], * and k is meaningful to the application. * Therefore x will be adjusted while keeping k preserved. * * @param point The point to normalize in-place. * @param normLat Whether to normalize latitude or leave it as is. * @param normLon Whether to normalize longitude. */ public static void normalizePoint(GeoPoint point, boolean normLat, boolean normLon) { double[] pt = { point.lon(), point.lat() }; normalizePoint(pt, normLon, normLat); point.reset(pt[1], pt[0]); } public static void normalizePoint(double[] lonLat) { normalizePoint(lonLat, true, true); } public static void normalizePoint(double[] lonLat, boolean normLon, boolean normLat) { assert lonLat != null && lonLat.length == 2; normLat = normLat && (lonLat[1] > 90 || lonLat[1] < -90); normLon = normLon && (lonLat[0] > 180 || lonLat[0] < -180 || normLat); if (normLat) { lonLat[1] = centeredModulus(lonLat[1], 360); boolean shift = true; if (lonLat[1] < -90) { lonLat[1] = -180 - lonLat[1]; } else if (lonLat[1] > 90) { lonLat[1] = 180 - lonLat[1]; } else { // No need to shift the longitude, and the latitude is normalized shift = false; } if (shift) { if (normLon) { lonLat[0] += 180; } else { // Longitude won't be normalized, // keep it in the form x+k*360 (with x in ]-180;180]) // by only changing x, assuming k is meaningful for the user application. lonLat[0] += normalizeLon(lonLat[0]) > 0 ? -180 : 180; } } } if (normLon) { lonLat[0] = centeredModulus(lonLat[0], 360); } } public static double centeredModulus(double dividend, double divisor) { double rtn = dividend % divisor; if (rtn <= 0) { rtn += divisor; } if (rtn > divisor / 2) { rtn -= divisor; } return rtn; } /** * Parse a {@link GeoPoint} with a {@link XContentParser}: * * @param parser {@link XContentParser} to parse the value from * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint(XContentParser parser) throws IOException, OpenSearchParseException { return parseGeoPoint(parser, new GeoPoint()); } public static GeoPoint parseGeoPoint(XContentParser parser, GeoPoint point) throws IOException, OpenSearchParseException { return parseGeoPoint(parser, point, false); } /** * Parses the value as a geopoint. The following types of values are supported: *

* Object: has to contain either lat and lon or geohash fields *

* String: expected to be in "latitude, longitude" format or a geohash *

* Array: two or more elements, the first element is longitude, the second is latitude, the rest is ignored if ignoreZValue is true */ public static GeoPoint parseGeoPoint(Object value, final boolean ignoreZValue) throws OpenSearchParseException { return parseGeoPoint(value, new GeoPoint(), ignoreZValue); } /** * Parses the value as a geopoint. The following types of values are supported: *

* Object: has to contain either lat and lon or geohash fields *

* String: expected to be in "latitude, longitude" format or a geohash *

* Array: two or more elements, the first element is longitude, the second is latitude, the rest is ignored if ignoreZValue is true */ public static GeoPoint parseGeoPoint(Object value, GeoPoint point, final boolean ignoreZValue) throws OpenSearchParseException { try ( XContentParser parser = new MapXContentParser( NamedXContentRegistry.EMPTY, LoggingDeprecationHandler.INSTANCE, Collections.singletonMap("null_value", value), null ) ) { parser.nextToken(); // start object parser.nextToken(); // field name parser.nextToken(); // field value return parseGeoPoint(parser, point, ignoreZValue); } catch (IOException ex) { throw new OpenSearchParseException("error parsing geopoint", ex); } } /** * Represents the point of the geohash cell that should be used as the value of geohash * * @opensearch.internal */ public enum EffectivePoint { TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT } /** * Parse a geopoint represented as an object, string or an array. If the geopoint is represented as a geohash, * the left bottom corner of the geohash cell is used as the geopoint coordinates.GeoBoundingBoxQueryBuilder.java */ public static GeoPoint parseGeoPoint(XContentParser parser, GeoPoint point, final boolean ignoreZValue) throws IOException, OpenSearchParseException { return parseGeoPoint(parser, point, ignoreZValue, EffectivePoint.BOTTOM_LEFT); } /** * Parse a {@link GeoPoint} with a {@link XContentParser}. A geopoint has one of the following forms: * *

* * * @param parser {@link XContentParser} to parse the value from * @param point A {@link GeoPoint} that will be reset by the values parsed * @param ignoreZValue tells to ignore z value or throw exception when there is a z value * @param effectivePoint tells which point to use for GeoHash form * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint( final XContentParser parser, final GeoPoint point, final boolean ignoreZValue, final EffectivePoint effectivePoint ) throws IOException, OpenSearchParseException { switch (parser.currentToken()) { case START_OBJECT: parseGeoPointObject(parser, point, ignoreZValue, effectivePoint); break; case START_ARRAY: parseGeoPointArray(parser, point, ignoreZValue); break; case VALUE_STRING: String val = parser.text(); point.resetFromString(val, ignoreZValue, effectivePoint); break; default: throw new OpenSearchParseException("geo_point expected"); } return point; } private static GeoPoint parseGeoPointObject( final XContentParser parser, final GeoPoint point, final boolean ignoreZValue, final GeoUtils.EffectivePoint effectivePoint ) throws IOException { try (XContentSubParser subParser = new XContentSubParser(parser)) { if (subParser.nextToken() != XContentParser.Token.FIELD_NAME) { throw new OpenSearchParseException(ERR_MSG_INVALID_TOKEN, subParser.currentToken()); } String field = subParser.currentName(); if (LONGITUDE.equals(field) || LATITUDE.equals(field)) { parseGeoPointObjectBasicFields(subParser, point); } else if (GEOHASH.equals(field)) { parseGeoHashFields(subParser, point, effectivePoint); } else if (GEOJSON_TYPE.equals(field) || GEOJSON_COORDS.equals(field)) { parseGeoJsonFields(subParser, point, ignoreZValue); } else { throw new OpenSearchParseException(ERR_MSG_INVALID_FIELDS); } if (subParser.nextToken() != XContentParser.Token.END_OBJECT) { throw new OpenSearchParseException(ERR_MSG_INVALID_FIELDS); } return point; } } private static GeoPoint parseGeoPointObjectBasicFields(final XContentParser parser, final GeoPoint point) throws IOException { HashMap data = new HashMap<>(); for (int i = 0; i < 2; i++) { if (i != 0) { parser.nextToken(); } if (parser.currentToken() != XContentParser.Token.FIELD_NAME) { break; } String field = parser.currentName(); if (LONGITUDE.equals(field) == false && LATITUDE.equals(field) == false) { throw new OpenSearchParseException(ERR_MSG_INVALID_FIELDS); } switch (parser.nextToken()) { case VALUE_NUMBER: case VALUE_STRING: try { data.put(field, parser.doubleValue(true)); } catch (NumberFormatException e) { throw new OpenSearchParseException("[{}] and [{}] must be valid double values", e, LONGITUDE, LATITUDE); } break; default: throw new OpenSearchParseException("{} must be a number", field); } } if (data.get(LONGITUDE) == null) { throw new OpenSearchParseException("field [{}] missing", LONGITUDE); } if (data.get(LATITUDE) == null) { throw new OpenSearchParseException("field [{}] missing", LATITUDE); } return point.reset(data.get(LATITUDE), data.get(LONGITUDE)); } private static GeoPoint parseGeoHashFields( final XContentParser parser, final GeoPoint point, final GeoUtils.EffectivePoint effectivePoint ) throws IOException { if (parser.currentToken() != XContentParser.Token.FIELD_NAME) { throw new OpenSearchParseException(ERR_MSG_INVALID_TOKEN, parser.currentToken()); } if (GEOHASH.equals(parser.currentName()) == false) { throw new OpenSearchParseException(ERR_MSG_INVALID_FIELDS); } if (parser.nextToken() != XContentParser.Token.VALUE_STRING) { throw new OpenSearchParseException("{} must be a string", GEOHASH); } return point.parseGeoHash(parser.text(), effectivePoint); } private static GeoPoint parseGeoJsonFields(final XContentParser parser, final GeoPoint point, final boolean ignoreZValue) throws IOException { boolean hasTypePoint = false; boolean hasCoordinates = false; for (int i = 0; i < 2; i++) { if (i != 0) { parser.nextToken(); } if (parser.currentToken() != XContentParser.Token.FIELD_NAME) { if (hasTypePoint == false) { throw new OpenSearchParseException("field [{}] missing", GEOJSON_TYPE); } if (hasCoordinates == false) { throw new OpenSearchParseException("field [{}] missing", GEOJSON_COORDS); } } if (GEOJSON_TYPE.equals(parser.currentName())) { if (parser.nextToken() != XContentParser.Token.VALUE_STRING) { throw new OpenSearchParseException("{} must be a string", GEOJSON_TYPE); } // To be consistent with geo_shape parsing, ignore case here as well. if (ShapeType.POINT.name().equalsIgnoreCase(parser.text()) == false) { throw new OpenSearchParseException("{} must be Point", GEOJSON_TYPE); } hasTypePoint = true; } else if (GEOJSON_COORDS.equals(parser.currentName())) { if (parser.nextToken() != XContentParser.Token.START_ARRAY) { throw new OpenSearchParseException("{} must be an array", GEOJSON_COORDS); } parseGeoPointArray(parser, point, ignoreZValue); hasCoordinates = true; } else { throw new OpenSearchParseException(ERR_MSG_INVALID_FIELDS); } } return point; } private static GeoPoint parseGeoPointArray(final XContentParser parser, final GeoPoint point, final boolean ignoreZValue) throws IOException { try (XContentSubParser subParser = new XContentSubParser(parser)) { double x = Double.NaN; double y = Double.NaN; int element = 0; while (subParser.nextToken() != XContentParser.Token.END_ARRAY) { if (parser.currentToken() != XContentParser.Token.VALUE_NUMBER) { throw new OpenSearchParseException("numeric value expected"); } element++; if (element == 1) { x = parser.doubleValue(); } else if (element == 2) { y = parser.doubleValue(); } else if (element == 3) { GeoPoint.assertZValue(ignoreZValue, parser.doubleValue()); } else { throw new OpenSearchParseException("[geo_point] field type does not accept more than 3 values"); } } if (element < 2) { throw new OpenSearchParseException("[geo_point] field type should have at least two dimensions"); } return point.reset(y, x); } } /** * Parse a {@link GeoPoint} from a string. The string must have one of the following forms: * * * * @param val a String to parse the value from * @return new parsed {@link GeoPoint} */ public static GeoPoint parseFromString(String val) { GeoPoint point = new GeoPoint(); return point.resetFromString(val, false, EffectivePoint.BOTTOM_LEFT); } /** * Parse a precision that can be expressed as an integer or a distance measure like "1km", "10m". * * The precision is expressed as a number between 1 and 12 and indicates the length of geohash * used to represent geo points. * * @param parser {@link XContentParser} to parse the value from * @return int representing precision */ public static int parsePrecision(XContentParser parser) throws IOException, OpenSearchParseException { XContentParser.Token token = parser.currentToken(); if (token.equals(XContentParser.Token.VALUE_NUMBER)) { return XContentMapValues.nodeIntegerValue(parser.intValue()); } else { String precision = parser.text(); try { // we want to treat simple integer strings as precision levels, not distances return XContentMapValues.nodeIntegerValue(precision); } catch (NumberFormatException e) { // try to parse as a distance value final int parsedPrecision = GeoUtils.geoHashLevelsForPrecision(precision); try { return checkPrecisionRange(parsedPrecision); } catch (IllegalArgumentException e2) { // this happens when distance too small, so precision > 12. We'd like to see the original string throw new IllegalArgumentException("precision too high [" + precision + "]", e2); } } } } /** * Checks that the precision is within range supported by opensearch - between 1 and 12 * * Returns the precision value if it is in the range and throws an IllegalArgumentException if it * is outside the range. */ public static int checkPrecisionRange(int precision) { if ((precision < 1) || (precision > 12)) { throw new IllegalArgumentException("Invalid geohash aggregation precision of " + precision + ". Must be between 1 and 12."); } return precision; } /** Returns the maximum distance/radius (in meters) from the point 'center' before overlapping */ public static double maxRadialDistanceMeters(final double centerLat, final double centerLon) { if (Math.abs(centerLat) == MAX_LAT) { return SloppyMath.haversinMeters(centerLat, centerLon, 0, centerLon); } return SloppyMath.haversinMeters(centerLat, centerLon, centerLat, (MAX_LON + centerLon) % 360); } /** Return the distance (in meters) between 2 lat,lon geo points using the haversine method implemented by lucene */ public static double arcDistance(double lat1, double lon1, double lat2, double lon2) { return SloppyMath.haversinMeters(lat1, lon1, lat2, lon2); } /** * Return the distance (in meters) between 2 lat,lon geo points using a simple tangential plane * this provides a faster alternative to {@link GeoUtils#arcDistance} but is inaccurate for distances greater than * 4 decimal degrees */ public static double planeDistance(double lat1, double lon1, double lat2, double lon2) { double x = Math.toRadians(lon2 - lon1) * Math.cos(Math.toRadians((lat2 + lat1) / 2.0d)); double y = Math.toRadians(lat2 - lat1); return Math.sqrt(x * x + y * y) * EARTH_MEAN_RADIUS; } /** * Return a {@link SortedNumericDoubleValues} instance that returns the distances to a list of geo-points * for each document. */ public static SortedNumericDoubleValues distanceValues( final GeoDistance distance, final DistanceUnit unit, final MultiGeoPointValues geoPointValues, final GeoPoint... fromPoints ) { final GeoPointValues singleValues = FieldData.unwrapSingleton(geoPointValues); if (singleValues != null && fromPoints.length == 1) { return FieldData.singleton(new NumericDoubleValues() { @Override public boolean advanceExact(int doc) throws IOException { return singleValues.advanceExact(doc); } @Override public double doubleValue() throws IOException { final GeoPoint from = fromPoints[0]; final GeoPoint to = singleValues.geoPointValue(); return distance.calculate(from.lat(), from.lon(), to.lat(), to.lon(), unit); } }); } else { return new SortingNumericDoubleValues() { @Override public boolean advanceExact(int target) throws IOException { if (geoPointValues.advanceExact(target)) { resize(geoPointValues.docValueCount() * fromPoints.length); int v = 0; for (int i = 0; i < geoPointValues.docValueCount(); ++i) { final GeoPoint point = geoPointValues.nextValue(); for (GeoPoint from : fromPoints) { values[v] = distance.calculate(from.lat(), from.lon(), point.lat(), point.lon(), unit); v++; } } sort(); return true; } else { return false; } } }; } } private GeoUtils() {} }