/* * SPDX-License-Identifier: Apache-2.0 * * The OpenSearch Contributors require contributions made to * this file be licensed under the Apache-2.0 license or a * compatible open source license. */ /* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Modifications Copyright OpenSearch Contributors. See * GitHub history for details. */ package org.opensearch.search.aggregations.metrics; import org.opensearch.test.OpenSearchTestCase; import org.junit.Assert; public class CompensatedSumTests extends OpenSearchTestCase { /** * When adding a series of numbers the order of the numbers should not impact the results. * *

This test shows that a naive summation comes up with a different result than Kahan * Summation when you start with either a smaller or larger number in some cases and * helps prove our Kahan Summation is working. */ public void testAdd() { final CompensatedSum smallSum = new CompensatedSum(0.001, 0.0); final CompensatedSum largeSum = new CompensatedSum(1000, 0.0); CompensatedSum compensatedResult1 = new CompensatedSum(0.001, 0.0); CompensatedSum compensatedResult2 = new CompensatedSum(1000, 0.0); double naiveResult1 = smallSum.value(); double naiveResult2 = largeSum.value(); for (int i = 0; i < 10; i++) { compensatedResult1.add(smallSum.value()); compensatedResult2.add(smallSum.value()); naiveResult1 += smallSum.value(); naiveResult2 += smallSum.value(); } compensatedResult1.add(largeSum.value()); compensatedResult2.add(smallSum.value()); naiveResult1 += largeSum.value(); naiveResult2 += smallSum.value(); // Kahan summation gave the same result no matter what order we added Assert.assertEquals(1000.011, compensatedResult1.value(), 0.0); Assert.assertEquals(1000.011, compensatedResult2.value(), 0.0); // naive addition gave a small floating point error Assert.assertEquals(1000.011, naiveResult1, 0.0); Assert.assertEquals(1000.0109999999997, naiveResult2, 0.0); Assert.assertEquals(compensatedResult1.value(), compensatedResult2.value(), 0.0); Assert.assertEquals(naiveResult1, naiveResult2, 0.0001); Assert.assertNotEquals(naiveResult1, naiveResult2, 0.0); } public void testDelta() { CompensatedSum compensatedResult1 = new CompensatedSum(0.001, 0.0); for (int i = 0; i < 10; i++) { compensatedResult1.add(0.001); } Assert.assertEquals(0.011, compensatedResult1.value(), 0.0); Assert.assertEquals(Double.parseDouble("8.673617379884035E-19"), compensatedResult1.delta(), 0.0); } public void testInfiniteAndNaN() { CompensatedSum compensatedResult1 = new CompensatedSum(0, 0); double[] doubles = { Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, Double.NaN }; for (double d : doubles) { compensatedResult1.add(d); } Assert.assertTrue(Double.isNaN(compensatedResult1.value())); } }