/* * SPDX-License-Identifier: Apache-2.0 * * The OpenSearch Contributors require contributions made to * this file be licensed under the Apache-2.0 license or a * compatible open source license. */ /* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Modifications Copyright OpenSearch Contributors. See * GitHub history for details. */ package org.opensearch.search.aggregations.metrics; import org.opensearch.common.Strings; import org.opensearch.core.xcontent.ToXContent; import org.opensearch.core.xcontent.XContentBuilder; import org.opensearch.common.xcontent.json.JsonXContent; import org.opensearch.search.DocValueFormat; import org.opensearch.search.aggregations.InternalAggregation; import org.opensearch.search.aggregations.ParsedAggregation; import org.opensearch.test.InternalAggregationTestCase; import java.io.IOException; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class InternalStatsTests extends InternalAggregationTestCase { @Override protected InternalStats createTestInstance(String name, Map metadata) { long count = frequently() ? randomIntBetween(1, Integer.MAX_VALUE) : 0; double min = randomDoubleBetween(-1000000, 1000000, true); double max = randomDoubleBetween(-1000000, 1000000, true); double sum = randomDoubleBetween(-1000000, 1000000, true); DocValueFormat format = randomNumericDocValueFormat(); return createInstance(name, count, sum, min, max, format, metadata); } protected InternalStats createInstance( String name, long count, double sum, double min, double max, DocValueFormat formatter, Map metadata ) { return new InternalStats(name, count, sum, min, max, formatter, metadata); } @Override protected void assertReduced(InternalStats reduced, List inputs) { long expectedCount = 0; double expectedSum = 0; double expectedMin = Double.POSITIVE_INFINITY; double expectedMax = Double.NEGATIVE_INFINITY; for (InternalStats stats : inputs) { expectedCount += stats.getCount(); if (Double.compare(stats.getMin(), expectedMin) < 0) { expectedMin = stats.getMin(); } if (Double.compare(stats.getMax(), expectedMax) > 0) { expectedMax = stats.getMax(); } expectedSum += stats.getSum(); } assertEquals(expectedCount, reduced.getCount()); assertEquals(expectedSum, reduced.getSum(), 1e-7); assertEquals(expectedMin, reduced.getMin(), 0d); assertEquals(expectedMax, reduced.getMax(), 0d); } public void testSummationAccuracy() { double[] values = new double[] { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 }; verifyStatsOfDoubles(values, 13.5, 0.9, 0d); int n = randomIntBetween(5, 10); values = new double[n]; double sum = 0; for (int i = 0; i < n; i++) { values[i] = frequently() ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); sum += values[i]; } verifyStatsOfDoubles(values, sum, sum / n, TOLERANCE); // Summing up some big double values and expect infinity result n = randomIntBetween(5, 10); double[] largeValues = new double[n]; for (int i = 0; i < n; i++) { largeValues[i] = Double.MAX_VALUE; } verifyStatsOfDoubles(largeValues, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0d); for (int i = 0; i < n; i++) { largeValues[i] = -Double.MAX_VALUE; } verifyStatsOfDoubles(largeValues, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 0d); } private void verifyStatsOfDoubles(double[] values, double expectedSum, double expectedAvg, double delta) { List aggregations = new ArrayList<>(values.length); double max = Double.NEGATIVE_INFINITY; double min = Double.POSITIVE_INFINITY; for (double value : values) { max = Math.max(max, value); min = Math.min(min, value); aggregations.add(new InternalStats("dummy1", 1, value, value, value, null, null)); } InternalStats internalStats = new InternalStats("dummy2", 0, 0.0, 2.0, 0.0, null, null); InternalStats reduced = internalStats.reduce(aggregations, null); assertEquals("dummy2", reduced.getName()); assertEquals(values.length, reduced.getCount()); assertEquals(expectedSum, reduced.getSum(), delta); assertEquals(expectedAvg, reduced.getAvg(), delta); assertEquals(min, reduced.getMin(), 0d); assertEquals(max, reduced.getMax(), 0d); } @Override protected void assertFromXContent(InternalStats aggregation, ParsedAggregation parsedAggregation) { assertTrue(parsedAggregation instanceof ParsedStats); ParsedStats parsed = (ParsedStats) parsedAggregation; assertStats(aggregation, parsed); } static void assertStats(InternalStats aggregation, ParsedStats parsed) { long count = aggregation.getCount(); assertEquals(count, parsed.getCount()); // for count == 0, fields are rendered as `null`, so we test that we parse to default values used also in the reduce phase assertEquals(count > 0 ? aggregation.getMin() : Double.POSITIVE_INFINITY, parsed.getMin(), 0); assertEquals(count > 0 ? aggregation.getMax() : Double.NEGATIVE_INFINITY, parsed.getMax(), 0); assertEquals(count > 0 ? aggregation.getSum() : 0, parsed.getSum(), 0); assertEquals(count > 0 ? aggregation.getAvg() : 0, parsed.getAvg(), 0); // also as_string values are only rendered for count != 0 if (count > 0) { assertEquals(aggregation.getMinAsString(), parsed.getMinAsString()); assertEquals(aggregation.getMaxAsString(), parsed.getMaxAsString()); assertEquals(aggregation.getSumAsString(), parsed.getSumAsString()); assertEquals(aggregation.getAvgAsString(), parsed.getAvgAsString()); } } @Override protected InternalStats mutateInstance(InternalStats instance) { String name = instance.getName(); long count = instance.getCount(); double sum = instance.getSum(); double min = instance.getMin(); double max = instance.getMax(); DocValueFormat formatter = instance.format; Map metadata = instance.getMetadata(); switch (between(0, 5)) { case 0: name += randomAlphaOfLength(5); break; case 1: if (Double.isFinite(count)) { count += between(1, 100); } else { count = between(1, 100); } break; case 2: if (Double.isFinite(sum)) { sum += between(1, 100); } else { sum = between(1, 100); } break; case 3: if (Double.isFinite(min)) { min += between(1, 100); } else { min = between(1, 100); } break; case 4: if (Double.isFinite(max)) { max += between(1, 100); } else { max = between(1, 100); } break; case 5: if (metadata == null) { metadata = new HashMap<>(1); } else { metadata = new HashMap<>(instance.getMetadata()); } metadata.put(randomAlphaOfLength(15), randomInt()); break; default: throw new AssertionError("Illegal randomisation branch"); } return new InternalStats(name, count, sum, min, max, formatter, metadata); } public void testDoXContentBody() throws IOException { // count is greater than zero double min = randomDoubleBetween(-1000000, 1000000, true); double max = randomDoubleBetween(-1000000, 1000000, true); double sum = randomDoubleBetween(-1000000, 1000000, true); int count = randomIntBetween(1, 10); DocValueFormat format = randomNumericDocValueFormat(); InternalStats internalStats = createInstance("stats", count, sum, min, max, format, null); XContentBuilder builder = JsonXContent.contentBuilder().prettyPrint(); builder.startObject(); internalStats.doXContentBody(builder, ToXContent.EMPTY_PARAMS); builder.endObject(); String expected = "{\n" + " \"count\" : " + count + ",\n" + " \"min\" : " + min + ",\n" + " \"max\" : " + max + ",\n" + " \"avg\" : " + internalStats.getAvg() + ",\n" + " \"sum\" : " + sum; if (format != DocValueFormat.RAW) { expected += ",\n" + " \"min_as_string\" : \"" + format.format(internalStats.getMin()) + "\",\n" + " \"max_as_string\" : \"" + format.format(internalStats.getMax()) + "\",\n" + " \"avg_as_string\" : \"" + format.format(internalStats.getAvg()) + "\",\n" + " \"sum_as_string\" : \"" + format.format(internalStats.getSum()) + "\""; } expected += "\n}"; assertEquals(expected, Strings.toString(builder)); // count is zero format = randomNumericDocValueFormat(); min = 0.0; max = 0.0; sum = 0.0; count = 0; internalStats = createInstance("stats", count, sum, min, max, format, null); builder = JsonXContent.contentBuilder().prettyPrint(); builder.startObject(); internalStats.doXContentBody(builder, ToXContent.EMPTY_PARAMS); builder.endObject(); assertEquals( "{\n" + " \"count\" : 0,\n" + " \"min\" : null,\n" + " \"max\" : null,\n" + " \"avg\" : null,\n" + " \"sum\" : 0.0\n" + "}", Strings.toString(builder) ); } }