/* * SPDX-License-Identifier: Apache-2.0 * * The OpenSearch Contributors require contributions made to * this file be licensed under the Apache-2.0 license or a * compatible open source license. */ /* * Licensed to Elasticsearch under one or more contributor * license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright * ownership. Elasticsearch licenses this file to you under * the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Modifications Copyright OpenSearch Contributors. See * GitHub history for details. */ package org.opensearch.search.aggregations.metrics; import org.opensearch.search.DocValueFormat; import org.opensearch.search.aggregations.InternalAggregation; import org.opensearch.search.aggregations.ParsedAggregation; import org.opensearch.test.InternalAggregationTestCase; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class InternalSumTests extends InternalAggregationTestCase { @Override protected InternalSum createTestInstance(String name, Map metadata) { double value = frequently() ? randomDouble() : randomFrom(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, Double.NaN); DocValueFormat formatter = randomFrom(new DocValueFormat.Decimal("###.##"), DocValueFormat.RAW); return new InternalSum(name, value, formatter, metadata); } @Override protected void assertReduced(InternalSum reduced, List inputs) { double expectedSum = inputs.stream().mapToDouble(InternalSum::getValue).sum(); assertEquals(expectedSum, reduced.getValue(), 0.0001d); } public void testSummationAccuracy() { // Summing up a normal array and expect an accurate value double[] values = new double[] { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 }; verifySummationOfDoubles(values, 13.5, 0d); // Summing up an array which contains NaN and infinities and expect a result same as naive summation int n = randomIntBetween(5, 10); values = new double[n]; double sum = 0; for (int i = 0; i < n; i++) { values[i] = frequently() ? randomFrom(Double.NaN, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY) : randomDoubleBetween(Double.MIN_VALUE, Double.MAX_VALUE, true); sum += values[i]; } verifySummationOfDoubles(values, sum, TOLERANCE); // Summing up some big double values and expect infinity result n = randomIntBetween(5, 10); double[] largeValues = new double[n]; for (int i = 0; i < n; i++) { largeValues[i] = Double.MAX_VALUE; } verifySummationOfDoubles(largeValues, Double.POSITIVE_INFINITY, 0d); for (int i = 0; i < n; i++) { largeValues[i] = -Double.MAX_VALUE; } verifySummationOfDoubles(largeValues, Double.NEGATIVE_INFINITY, 0d); } private void verifySummationOfDoubles(double[] values, double expected, double delta) { List aggregations = new ArrayList<>(values.length); for (double value : values) { aggregations.add(new InternalSum("dummy1", value, null, null)); } InternalSum internalSum = new InternalSum("dummy", 0, null, null); InternalSum reduced = internalSum.reduce(aggregations, null); assertEquals(expected, reduced.value(), delta); } @Override protected void assertFromXContent(InternalSum sum, ParsedAggregation parsedAggregation) { ParsedSum parsed = ((ParsedSum) parsedAggregation); assertEquals(sum.getValue(), parsed.getValue(), Double.MIN_VALUE); assertEquals(sum.getValueAsString(), parsed.getValueAsString()); } @Override protected InternalSum mutateInstance(InternalSum instance) { String name = instance.getName(); double value = instance.getValue(); DocValueFormat formatter = instance.format; Map metadata = instance.getMetadata(); switch (between(0, 2)) { case 0: name += randomAlphaOfLength(5); break; case 1: if (Double.isFinite(value)) { value += between(1, 100); } else { value = between(1, 100); } break; case 2: if (metadata == null) { metadata = new HashMap<>(1); } else { metadata = new HashMap<>(instance.getMetadata()); } metadata.put(randomAlphaOfLength(15), randomInt()); break; default: throw new AssertionError("Illegal randomisation branch"); } return new InternalSum(name, value, formatter, metadata); } }