
Entity Priority

Each detector has its own landmark : period 0 when the detector is enabled. Consider one entity's count increments
at period . Given a positive monotone non-decreasing function , the decayed priority of the increment for the
entity period is:

L
i > L g

p ≥ i

 w(i, p) = g(p−L)
g(i−L)

For each cache hit, we maintain the sum of . Consider the stream of an entity's increment period g(i − L) i

 S = {3, 4, 5, 7, 8}

Recall that the landmark period , and set . We use the decay constant 0.125. The half life is 8*
ln(2). This means the old value falls to one half with roughly 5.6 intervals We chose 0.125 because multiplying 0.125
can be implemented efficiently using right shift and the half life is not too fast or slow . Evaluated at , the
decayed priorities are respectively

L = 0 g(n) = e0.125n

p = 10

The sums of during the process of cache hits are

{0.50, 0.55, 0.61, 0.74, 0.82}

g(i − L)

 {0.50, 1.05, 1.66, 2.40, 3.82}

Each detector maintains an ordered map, filled by entities's accumulated sum of . Since is changing
and they are the same for all entities of the same detector, we can compare entities' priorities by considering
the accumulated sum of .

When needing to replace an entity, we query the minimum from each ordered map and compute for each
minimum entity by scaling the sum by . Notice can be different if detectors start at different
timestamps. The minimum of the minimum is selected to be replaced. The number of multi-entity detectors is limited
(we consider to support ten currently), so the computation is cheap.

Theorem: The sum of exponential functions can grow large and potentially exceed the capacity of common floating
point types. We can express all of the values in log space to avoid overflow.

g(i − L) g(p − L)
w(i, p)

g(i − L)

w(i, p)
g(p − L) g(p − L)

Proof (to Joyce’s credit):
Instead of growing exponentially, new terms grow linearly. The relationship between entities (greater than, equal to,
less than) will be the same. Previously, the decayed count is the sum of decayed priorities of stream itemsC

 C = (g(t −∑i=1
n

i L)/g(t − L))

In log space, the decayed count becomes:

We can’t discuss how to admit entity states until we agree on the primitive measuring an entity’s priority in the cache.
 We don’t want to admit the latest entity for correctness by throwing out a hot entity. We need a time-decayed count
sensitive to the number of hits, length of time, and sampling interval. For example, an entity from a 5-minute interval
detector that is hit 5 times in the past 25 minutes should have an equal chance of using the cache along with an entity
from a 1-minute interval detector that is hit 5 times in the past 5 minutes. It might be the case that the frequency of
entities changes dynamically during run-time. For example, entity A showed up for the first 500 times, but entity B
showed up for the next 500 times. The formula should give entity B higher priority than entity A as time goes by. We
next describe our priority measurement.

http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf
https://en.wikipedia.org/wiki/Exponential_decay

 log(C) = log((g(t −∑i=1
n

i L)/g(t − L))) = log((g(t −∑i=1
n

i L)) − log(g(t − L))

To add a new term each time the entity gets a hit after the first hit, we use the log summation relationship :

 (i)log(a + b) = log(a) + log(1 +) =
a
b

log(a) + log(1 + e)log(b)−log(a)

So the update step would be

 log((g(t −∑i=1
k

i L)) = log((g(t −∑i=1
k−1

i L)) + log(1 + e)log(g(t −L))−log((g(t −L)))k ∑i=1
k−1

i

Let . The update step is given byold count = log((g(t −∑i=1
k−1

i L))

 (ii)log((g(t −∑i=1
k

i L)) = old count + log(1 + e)log(g(t −L))−old countk

However, in this update step, we need to compute , which can still result in overflow if
 is large. This can happen if it has been a long time since the entity’s last hit (e.g. an entity with 1-

minute interval that receives a hit after more than 88+ minutes without a hit. 88 minutes are derived by solving the
equation).

elog(g(t −L))−old countk

elog(g(t −L))−old countk

e >x max f loat

However in the cases where is so much larger than that would overflow,
then is an extremely close approximation to the true count at . To show this is true, according to (i)
and (ii):

log(g(t −k L)) old count elog(g(t −L)−old countk

log(g(t −k L)) t k

If is so large it overflows, then its inverse will be so small it underflows to 0, so that last term is
approximately . Then:

log((g(t −
i=1

∑
k

i L)) = old count + (log(g(t −k L)) − old count) + log(1 + e)−(log(g(t −L)−old count))k

elog(g(t −L))−old countk

log(0 + 1) = 0
 . In fact, this approximate is so close to the true

 that a float doesn’t even have enough precision to distinguish the difference.

IMPORTANT NOTE: this approximation is only close if is large. If it isn’t large enough to cause
overflow, just use the exact calculation.

log((g(t −∑i=1
k

i L)) = log(g(t −k L)) log((g(t −∑i=1
k

i L))
log((g(t −∑i=1

k
i L)))

elog(g(t −L)−old countk

http://log%28a%20+%20b%29%20%3D%20log%28a%29%20+%20log%281%20+%20/dfrac%7Bb%7D%7Ba%7D)%20=%20log(a)%20+%20log(1+e%5E%7Blog(b)%20-%20log(a)%7D)

