#!/usr/bin/env python3 # # expand-data-corpus.py - Generate a new data corpus from the http_logs corpus # # Takes one of the http_logs corpora files as input and duplicates it # as specified; then emits the documents with a modified timestamp # sequence. Also generates the associated offset file to enable OSB # to start up faster. # # See the help message for more information. # import os import sys import signal import argparse import json import configparser help_msg = """ NOTE: This is a beta feature. The user model, interface and options are subject to change. This tool is intended for the purpose of expanding the size of the data corpus associated an OSB workload. Currently, this capability is implemented only for the http_logs workload. TLDR: to generate a 100 GB corpus and then run a test against it: $ expand-data-corpus.py --corpus-size 100 --output-file-suffix 100gb $ opensearch-benchmark execute-test --workload http_logs \\ --workload_params=generated_corpus:t ... The script generates new documents by duplicating ones in the existing corpus files, while modifying the timestamp field. It takes several arguments, listed below. The two primary ones deal with specifying the desired target corpus size and the corpus name. The remaining options, tagged with "EXPERT", are mainly intended for advanced users. Duplication of documents will lead to the fields other than the timestamp potentially recurring multiple times. However, the efficacy of the queries should not be impacted if the script parameters are selected appropriately as indicated below. The larger data corpus would be suitable for running the workload at a larger scale on, for instance, clusters with multiple data nodes or featuring an upgraded instance type. To carry out an performance test using the generated corpus, the following flag needs to be passed to the OSB command: --workload-params=generated_corpus:t Additional workload parameters can be added to the "workload-params" option as desired. The script can be invoked multiple times to create several corpora that will all be loaded concurrently. Prerequisites: * The data corpus files associated with http_logs need to already have been downloaded. The easiest way to do this is to carry out a normal run, perhaps by limiting it to indexing-only. * The input file should be one of the data corpus files downloaded from the http_logs OSB workloads repository. The script cues off the text alignment in those files. Notes and limitations: * This feature is currently available only for OpenSearch clusters and Elasticsearch 7 cluster. * The options tagged with "EXPERT" are intended for advanced users and should not be needed in normal use. * There is currently no mechanism provided to manage the generated corpora files. The workaround for now is to delete them manually from the http_logs data directory, and the associated gen-* files in the http_logs workload directory. New ones can be regenerated subsequently, if desired. * OSB runs with and without the 'generated_corpus' flag should not generally be interleaved, since they target different indices. However, OSB can be run in ingest-only mode to ingest both the generated and default corpora in two separate runs. Once ingested, queries packaged with the workload will operate on the entire loaded data set. * To be compliant with the time ranges used in the existing queries, the interval parameter is set to -2 for every 1 GB corpus size. This generates ~20 documents per timestamp for a 10 GB size. * The script is not currently optimized for speed. Allow for about ~30 min for every 100 GB. Usage: Use the -h option to view script usage and options. """ def handler(signum, frame): sys.exit(1) class DocGenerator: def __init__(self, input_file: str, start_timestamp: int, interval:int) -> None: self.input_file = input_file self.timestamp = start_timestamp self.interval = interval def get_next_doc(self): line_num = 0 ndocs_per_ts = -self.interval if self.interval < 0 else 1 with open(self.input_file) as fh: while True: fh.seek(0) for line in fh: s = '{"@timestamp": ' + str(self.timestamp) + line[24:] # Increment timestamp. if self.interval < 0: if line_num % ndocs_per_ts == 0: self.timestamp += 1 else: self.timestamp += self.interval yield s line_num += 1 class ArgParser(argparse.ArgumentParser): def usage_msg(self, message: str=None) -> None: if message: print(message, file=sys.stderr) print(file=sys.stderr) self.print_help(sys.stderr) sys.exit(1) def error(self, message): print('error: %s' % message, file=sys.stderr) self.usage_msg() def generate_docs(workload: str, repository: str, input_file: str, output_file_suffix: str, n_docs: int, corpus_size: int, interval: int, start_timestamp: int, batch_size: int): # # Set up for generation. # config = configparser.ConfigParser() benchmark_home = os.environ.get('BENCHMARK_HOME') or os.environ['HOME'] config.read(benchmark_home + '/.benchmark/benchmark.ini') root_dir = config['node']['root.dir'] workload_dir= root_dir + '/workloads/' + repository + '/' + workload data_dir = config['benchmarks']['local.dataset.cache'] + '/' + workload output_file = data_dir + '/documents-' + output_file_suffix + '.json' if '/' not in input_file: input_file = data_dir + '/' + input_file out = open(output_file, 'w') offsets = open(output_file + '.offset', 'w') # # Obtain the generator to synthesize the documents. # g = DocGenerator(input_file, start_timestamp, interval).\ get_next_doc() # # Generate the desired number of documents. # line_num = 0 offset = 0 while True: if n_docs and line_num >= n_docs: break if corpus_size and offset >= corpus_size * 1000**3: break # Offset file entry. if line_num > 0 and line_num % batch_size == 0: s = str(line_num) + ';' + str(offset) + '\n' offsets.write(s) line = next(g) out.write(line) offset += len(line) line_num += 1 out.close() offsets.close() # # Create the metadata files. # corpus_spec = dict() corpus_spec['target-index'] = 'logs-' + output_file_suffix corpus_spec['source-file'] = output_file corpus_spec['document-count'] = line_num corpus_spec['uncompressed-bytes'] = offset out = open(workload_dir + '/gen-docs-' + output_file_suffix + '.json', 'w') out.write(json.dumps(corpus_spec) + '\n') out.close() idx_spec = dict() idx_spec['name'] = 'logs-' + output_file_suffix idx_spec['body'] = 'index.json' out = open(workload_dir + '/gen-idx-' + output_file_suffix + '.json', 'w') out.write(json.dumps(idx_spec) + '\n') out.close() def main(args: list) -> None: signal.signal(signal.SIGINT, handler) script_name = os.path.basename(__file__) parser = ArgParser(description=help_msg, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-w', '--workload', default='http_logs', help="workload name, default: %(default)s") parser.add_argument('-r', '--workload-repository', default='default', help="workload name, default: %(default)s") parser.add_argument('-c', '--corpus-size', type=int, help="size of corpus to generate in GB") parser.add_argument('-o', '--output-file-suffix', default='generated', help="suffix for output file name, " "documents-SUFFIX.json, default: %(default)s") parser.add_argument('-f', '--input-file', default='documents-241998.json', help="[EXPERT] input file name, default: %(default)s") parser.add_argument('-n', '--number-of-docs', type=int, help="[EXPERT] number of documents to generate") parser.add_argument('-i', '--interval', type=int, help="[EXPERT] interval between consecutive " "timestamps, use a negative number to specify multiple " "docs per timestamp") parser.add_argument('-t', '--start-timestamp', type=int, default=893964618, help="[EXPERT] start timestamp, default: %(default)d") parser.add_argument('-b', '--batch-size', default=50000, help="[EXPERT] batch size per OSB client thread, " "default: %(default)d") args = parser.parse_args() workload = args.workload repository = args.workload_repository input_file = args.input_file output_file_suffix = args.output_file_suffix n_docs = args.number_of_docs corpus_size = args.corpus_size interval = args.interval if args.interval is not None else \ corpus_size * -2 start_timestamp = args.start_timestamp batch_size = args.batch_size if n_docs and corpus_size: parser.usage_msg(script_name + ": can specify either number of documents" "or corpus size, but not both") elif not n_docs and not corpus_size: parser.usage_msg(script_name + ": must specify number of documents or corpus size") if workload != 'http_logs': parser.usage_msg(script_name + ': only the "http_logs" workload is currently supported') generate_docs(workload, repository, input_file, output_file_suffix, n_docs, corpus_size, interval, start_timestamp, batch_size) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))