/* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
using System;
using System.Runtime.Serialization;
using OpenSearch.Net.Utf8Json;
using OpenSearch.Net.Utf8Json.Internal;
namespace OpenSearch.Client
{
///
/// A query that only works on rank_feature fields and rank_features fields. Its goal is to boost the score of documents
/// based on the values of numeric features. It is typically put in a should clause of a bool query so that its score
/// is added to the score of the query.
///
/// Compared to using function_score or other ways to modify the score, this query has the benefit of being able to efficiently
/// skip non-competitive hits when track_total_hits is not set to true. Speedups may be spectacular.
///
[JsonFormatter(typeof(RankFeatureQueryFormatter))]
[InterfaceDataContract]
public interface IRankFeatureQuery : IFieldNameQuery
{
///
IRankFeatureFunction Function { get; set; }
}
public class RankFeatureQuery : FieldNameQueryBase, IRankFeatureQuery
{
protected override bool Conditionless => IsConditionless(this);
internal static bool IsConditionless(IRankFeatureQuery q) => q.Field.IsConditionless();
internal override void InternalWrapInContainer(IQueryContainer container) => container.RankFeature = this;
///
public IRankFeatureFunction Function { get; set; }
}
public class RankFeatureQueryDescriptor
: FieldNameQueryDescriptorBase, IRankFeatureQuery, T>
, IRankFeatureQuery where T : class
{
IRankFeatureFunction IRankFeatureQuery.Function { get; set; }
protected override bool Conditionless => RankFeatureQuery.IsConditionless(this);
///
public RankFeatureQueryDescriptor Saturation(Func selector = null) =>
Assign(selector, (a, v) => a.Function = v.InvokeOrDefault(new RankFeatureSaturationFunctionDescriptor()));
///
public RankFeatureQueryDescriptor Logarithm(Func selector) =>
Assign(selector, (a, v) => a.Function = v?.Invoke(new RankFeatureLogarithmFunctionDescriptor()));
///
public RankFeatureQueryDescriptor Sigmoid(Func selector) =>
Assign(selector, (a, v) => a.Function = v?.Invoke(new RankFeatureSigmoidFunctionDescriptor()));
///
public RankFeatureQueryDescriptor Linear()
{
Self.Function = new RankFeatureLinearFunction();
return this;
}
}
///
/// A function to boost scores in a rank_feature query, using the values of rank features.
///
public interface IRankFeatureFunction { }
///
/// Gives a score that is equal to log(scaling_factor + S) where S is the value of the rank feature and scaling_factor is a configurable
/// scaling factor. Scores are unbounded.
/// This function only supports rank features that have a positive score impact.
///
public interface IRankFeatureLogarithmFunction : IRankFeatureFunction
{
///
/// The scaling factor
///
[DataMember(Name = "scaling_factor")]
float ScalingFactor { get; set; }
}
///
public class RankFeatureLogarithmFunction : IRankFeatureLogarithmFunction
{
///
public float ScalingFactor { get; set; }
}
///
public class RankFeatureLogarithmFunctionDescriptor
: DescriptorBase, IRankFeatureLogarithmFunction
{
float IRankFeatureLogarithmFunction.ScalingFactor { get; set; }
///
public RankFeatureLogarithmFunctionDescriptor ScalingFactor(float scalingFactor) =>
Assign(scalingFactor, (a, v) => a.ScalingFactor = v);
}
///
/// Gives a score that is equal to S / (S + pivot) where S is the value of the rank feature and pivot is a configurable pivot value
/// so that the result will be less than 0.5 if S is less than pivot and greater than 0.5 otherwise. Scores are always is (0, 1).
/// If the rank feature has a negative score impact then the function will be computed as pivot / (S + pivot), which decreases when S increases.
///
public interface IRankFeatureSaturationFunction : IRankFeatureFunction
{
[DataMember(Name = "pivot")]
float? Pivot { get; set; }
}
///
public class RankFeatureSaturationFunction : IRankFeatureSaturationFunction
{
public float? Pivot { get; set; }
}
///
public class RankFeatureSaturationFunctionDescriptor
: DescriptorBase, IRankFeatureSaturationFunction
{
float? IRankFeatureSaturationFunction.Pivot { get; set; }
///
public RankFeatureSaturationFunctionDescriptor Pivot(float? pivot) => Assign(pivot, (a, v) => a.Pivot = v);
}
///
/// is an extension of saturation which adds a configurable exponent. Scores are computed as S^exp^ / (S^exp^ + pivot^exp^).
/// Like for the saturation function, pivot is the value of S that gives a score of 0.5 and scores are in (0, 1).
///
/// exponent must be positive, but is typically in [0.5, 1]. A good value should be computed via training. If you don’t have the opportunity
/// to do so, we recommend that you stick to the saturation function instead.
///
public interface IRankFeatureSigmoidFunction : IRankFeatureFunction
{
[DataMember(Name = "pivot")]
float Pivot { get; set; }
///
/// The exponent. Must be positive
///
[DataMember(Name = "exponent")]
float Exponent { get; set; }
}
///
public class RankFeatureSigmoidFunction : IRankFeatureSigmoidFunction
{
public float Pivot { get; set; }
///
public float Exponent { get; set; }
}
///
public class RankFeatureSigmoidFunctionDescriptor
: DescriptorBase, IRankFeatureSigmoidFunction
{
float IRankFeatureSigmoidFunction.Exponent { get; set; }
float IRankFeatureSigmoidFunction.Pivot { get; set; }
///
public RankFeatureSigmoidFunctionDescriptor Exponent(float exponent) => Assign(exponent, (a, v) => a.Exponent = v);
///
public RankFeatureSigmoidFunctionDescriptor Pivot(float pivot) => Assign(pivot, (a, v) => a.Pivot = v);
}
///
/// Gives a score equal to the indexed value of S, where S is the value of the rank feature field.
///
/// If a rank feature field is indexed with "positive_score_impact": true, its indexed value is equal to S and rounded to preserve
/// only 9 significant bits for the precision.
///
/// If a rank feature field is indexed with "positive_score_impact": false, its indexed value is equal to 1/S and rounded to
/// preserve only 9 significant bits for the precision.
///
public interface IRankFeatureLinearFunction : IRankFeatureFunction
{
}
///
public class RankFeatureLinearFunction : IRankFeatureLinearFunction
{
}
internal class RankFeatureQueryFormatter : IJsonFormatter
{
public void Serialize(ref JsonWriter writer, IRankFeatureQuery value, IJsonFormatterResolver formatterResolver)
{
if (value == null)
{
writer.WriteNull();
return;
}
writer.WriteBeginObject();
if (!string.IsNullOrEmpty(value.Name))
{
writer.WritePropertyName("_name");
writer.WriteString(value.Name);
writer.WriteValueSeparator();
}
if (value.Boost.HasValue)
{
writer.WritePropertyName("boost");
writer.WriteDouble(value.Boost.Value);
writer.WriteValueSeparator();
}
writer.WritePropertyName("field");
var fieldFormatter = formatterResolver.GetFormatter();
fieldFormatter.Serialize(ref writer, value.Field, formatterResolver);
if (value.Function != null)
{
writer.WriteValueSeparator();
switch (value.Function)
{
case IRankFeatureSigmoidFunction sigmoid:
SerializeScoreFunction(ref writer, "sigmoid", sigmoid, formatterResolver);
break;
case IRankFeatureSaturationFunction saturation:
SerializeScoreFunction(ref writer, "saturation", saturation, formatterResolver);
break;
case IRankFeatureLogarithmFunction log:
SerializeScoreFunction(ref writer, "log", log, formatterResolver);
break;
case IRankFeatureLinearFunction log:
SerializeScoreFunction(ref writer, "linear", log, formatterResolver);
break;
}
}
writer.WriteEndObject();
}
private static void SerializeScoreFunction(ref JsonWriter writer, string name, TScoreFunction scoreFunction,
IJsonFormatterResolver formatterResolver
) where TScoreFunction : IRankFeatureFunction
{
writer.WritePropertyName(name);
formatterResolver.GetFormatter()
.Serialize(ref writer, scoreFunction, formatterResolver);
}
private static IRankFeatureFunction DeserializeScoreFunction(ref JsonReader reader, IJsonFormatterResolver formatterResolver)
where TScoreFunction : IRankFeatureFunction =>
formatterResolver.GetFormatter().Deserialize(ref reader, formatterResolver);
private static readonly AutomataDictionary Fields = new AutomataDictionary
{
{ "_name", 0 },
{ "boost", 1 },
{ "field", 2 },
{ "saturation", 3 },
{ "log", 4 },
{ "sigmoid", 5 },
{ "linear", 6 }
};
public IRankFeatureQuery Deserialize(ref JsonReader reader, IJsonFormatterResolver formatterResolver)
{
if (reader.ReadIsNull())
return null;
var query = new RankFeatureQuery();
var count = 0;
while (reader.ReadIsInObject(ref count))
{
if (Fields.TryGetValue(reader.ReadPropertyNameSegmentRaw(), out var value))
{
switch (value)
{
case 0:
query.Name = reader.ReadString();
break;
case 1:
query.Boost = reader.ReadDouble();
break;
case 2:
query.Field = formatterResolver.GetFormatter().Deserialize(ref reader, formatterResolver);
break;
case 3:
query.Function = DeserializeScoreFunction(ref reader, formatterResolver);
break;
case 4:
query.Function = DeserializeScoreFunction(ref reader, formatterResolver);
break;
case 5:
query.Function = DeserializeScoreFunction(ref reader, formatterResolver);
break;
case 6:
query.Function = DeserializeScoreFunction(ref reader, formatterResolver);
break;
}
}
else
reader.ReadNextBlock();
}
return query;
}
}
}