# SPDX-License-Identifier: Apache-2.0 # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. # Any modifications Copyright OpenSearch Contributors. See # GitHub history for details. # Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import copy import warnings from collections import defaultdict from datetime import datetime from typing import ( TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, TextIO, Tuple, Union, ) import numpy as np import pandas as pd # type: ignore from opensearch_py_ml.actions import PostProcessingAction from opensearch_py_ml.common import ( DEFAULT_PAGINATION_SIZE, DEFAULT_PROGRESS_REPORTING_NUM_ROWS, DEFAULT_SEARCH_SIZE, SortOrder, build_pd_series, opensearch_date_to_pandas_date, ) from opensearch_py_ml.index import Index from opensearch_py_ml.query import Query from opensearch_py_ml.tasks import ( RESOLVED_TASK_TYPE, ArithmeticOpFieldsTask, BooleanFilterTask, HeadTask, QueryIdsTask, QueryTermsTask, SampleTask, SizeTask, TailTask, ) if TYPE_CHECKING: from numpy.typing import DTypeLike from opensearch_py_ml.arithmetics import ArithmeticSeries from opensearch_py_ml.field_mappings import Field from opensearch_py_ml.filter import BooleanFilter from opensearch_py_ml.query_compiler import QueryCompiler from opensearch_py_ml.tasks import Task class QueryParams: def __init__(self) -> None: self.query: Query = Query() self.sort_field: Optional[str] = None self.sort_order: Optional[SortOrder] = None self.size: Optional[int] = None self.fields: Optional[List[str]] = None self.script_fields: Optional[Dict[str, Dict[str, Any]]] = None class Operations: """ A collector of the queries and selectors we apply to queries to return the appropriate results. For example, - a list of the field_names in the DataFrame (a subset of field_names in the index) - a size limit on the results (e.g. for head(n=5)) - a query to filter the results (e.g. df.A > 10) This is maintained as a 'task graph' (inspired by dask) (see https://docs.dask.org/en/latest/spec.html) """ def __init__( self, tasks: Optional[List["Task"]] = None, arithmetic_op_fields_task: Optional["ArithmeticOpFieldsTask"] = None, ) -> None: self._tasks: List["Task"] if tasks is None: self._tasks = [] else: self._tasks = tasks self._arithmetic_op_fields_task = arithmetic_op_fields_task def __constructor__( self, *args: Any, **kwargs: Any, ) -> "Operations": return type(self)(*args, **kwargs) def copy(self) -> "Operations": return self.__constructor__( tasks=copy.deepcopy(self._tasks), arithmetic_op_fields_task=copy.deepcopy(self._arithmetic_op_fields_task), ) def head(self, index: "Index", n: int) -> None: # Add a task that is an ascending sort with size=n task = HeadTask(index, n) self._tasks.append(task) def tail(self, index: "Index", n: int) -> None: # Add a task that is descending sort with size=n task = TailTask(index, n) self._tasks.append(task) def sample(self, index: "Index", n: int, random_state: int) -> None: task = SampleTask(index, n, random_state) self._tasks.append(task) def arithmetic_op_fields( self, display_name: str, arithmetic_series: "ArithmeticSeries" ) -> None: if self._arithmetic_op_fields_task is None: self._arithmetic_op_fields_task = ArithmeticOpFieldsTask( display_name, arithmetic_series ) else: self._arithmetic_op_fields_task.update(display_name, arithmetic_series) def get_arithmetic_op_fields(self) -> Optional[ArithmeticOpFieldsTask]: # get an ArithmeticOpFieldsTask if it exists return self._arithmetic_op_fields_task def __repr__(self) -> str: return repr(self._tasks) def count(self, query_compiler: "QueryCompiler") -> pd.Series: query_params, post_processing = self._resolve_tasks(query_compiler) # Opensearch _count is very efficient and so used to return results here. This means that # data frames that have restricted size or sort params will not return valid results # (_count doesn't support size). # Longer term we may fall back to pandas, but this may result in loading all index into memory. if self._size(query_params, post_processing) is not None: raise NotImplementedError( f"Requesting count with additional query and processing parameters " f"not supported {query_params} {post_processing}" ) # Only return requested field_names fields = query_compiler.get_field_names(include_scripted_fields=False) counts = {} for field in fields: body = Query(query_params.query) body.exists(field, must=True) field_exists_count = query_compiler._client.count( index=query_compiler._index_pattern, body=body.to_count_body() )["count"] counts[field] = field_exists_count return build_pd_series(data=counts, index=fields) def _metric_agg_series( self, query_compiler: "QueryCompiler", agg: List["str"], numeric_only: Optional[bool] = None, ) -> pd.Series: results = self._metric_aggs(query_compiler, agg, numeric_only=numeric_only) if numeric_only: return build_pd_series(results, index=results.keys(), dtype=np.float64) else: # If all results are float convert into float64 if all(isinstance(i, float) for i in results.values()): dtype: "DTypeLike" = np.float64 # If all results are int convert into int64 elif all(isinstance(i, int) for i in results.values()): dtype = np.int64 # If single result is present consider that datatype instead of object elif len(results) <= 1: dtype = None else: dtype = "object" return build_pd_series(results, index=results.keys(), dtype=dtype) def value_counts(self, query_compiler: "QueryCompiler", os_size: int) -> pd.Series: return self._terms_aggs(query_compiler, "terms", os_size) def hist( self, query_compiler: "QueryCompiler", bins: int ) -> Tuple[pd.DataFrame, pd.DataFrame]: return self._hist_aggs(query_compiler, bins) def idx( self, query_compiler: "QueryCompiler", axis: int, sort_order: str ) -> pd.Series: if axis == 1: # Fetch idx on Columns raise NotImplementedError( "This feature is not implemented yet for 'axis = 1'" ) # Fetch idx on Index query_params, post_processing = self._resolve_tasks(query_compiler) fields = query_compiler._mappings.all_source_fields() # Consider only Numeric fields fields = [field for field in fields if (field.is_numeric)] body = Query(query_params.query) for field in fields: body.top_hits_agg( name=f"top_hits_{field.os_field_name}", source_columns=[field.os_field_name], sort_order=sort_order, size=1, ) # Fetch Response response = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body() ) response = response["aggregations"] results = {} for field in fields: res = response[f"top_hits_{field.os_field_name}"]["hits"] if not res["total"]["value"] > 0: raise ValueError("Empty Index with no rows") if not res["hits"][0]["_source"]: # This means there are NaN Values, we skip them # Implement this when skipna is implemented continue else: results[field.os_field_name] = res["hits"][0]["_id"] return pd.Series(results) def aggs( self, query_compiler: "QueryCompiler", pd_aggs: List[str], numeric_only: Optional[bool] = None, ) -> pd.DataFrame: results = self._metric_aggs( query_compiler, pd_aggs, numeric_only=numeric_only, is_dataframe_agg=True ) return pd.DataFrame( results, index=pd_aggs, dtype=(np.float64 if numeric_only else None) ) def mode( self, query_compiler: "QueryCompiler", pd_aggs: List[str], is_dataframe: bool, os_size: int, numeric_only: bool = False, dropna: bool = True, ) -> Union[pd.DataFrame, pd.Series]: results = self._metric_aggs( query_compiler, pd_aggs=pd_aggs, numeric_only=numeric_only, dropna=dropna, os_mode_size=os_size, ) pd_dict: Dict[str, Any] = {} row_diff: Optional[int] = None if is_dataframe: # If multiple values of mode is returned for a particular column # find the maximum length and use that to fill dataframe with NaN/NaT rows_len = max(len(value) for value in results.values()) for key, values in results.items(): row_diff = rows_len - len(values) # Convert np.ndarray to list values = list(values) if row_diff: if isinstance(values[0], pd.Timestamp): values.extend([pd.NaT] * row_diff) else: values.extend([np.NaN] * row_diff) pd_dict[key] = values return pd.DataFrame(pd_dict) else: return pd.DataFrame(results).iloc[:, 0] def _metric_aggs( self, query_compiler: "QueryCompiler", pd_aggs: List[str], numeric_only: Optional[bool] = None, is_dataframe_agg: bool = False, os_mode_size: Optional[int] = None, dropna: bool = True, percentiles: Optional[List[float]] = None, ) -> Dict[str, Any]: """ Used to calculate metric aggregations https://opensearch.org/docs/latest/opensearch/metric-agg/ Parameters ---------- query_compiler: Query Compiler object pd_aggs: aggregations that are to be performed on dataframe or series numeric_only: return either all numeric values or NaN/NaT is_dataframe_agg: know if this method is called from single-agg or aggreagation method os_mode_size: number of rows to return when multiple mode values are present. dropna: drop NaN/NaT for a dataframe percentiles: List of percentiles when 'quantile' agg is called. Otherwise it is None Returns ------- A dictionary which contains all aggregations calculated. """ query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) fields = query_compiler._mappings.all_source_fields() if numeric_only: # Consider if field is Int/Float/Bool fields = [field for field in fields if (field.is_numeric or field.is_bool)] body = Query(query_params.query) # Convert pandas aggs to ES equivalent os_aggs = self._map_pd_aggs_to_os_aggs(pd_aggs, percentiles) for field in fields: for os_agg in os_aggs: # NaN/NaT fields are ignored if not field.is_os_agg_compatible(os_agg): continue # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call if isinstance(os_agg, tuple): if os_agg[0] == "percentiles": body.percentile_agg( name=f"{os_agg[0]}_{field.os_field_name}", field=field.os_field_name, percents=os_agg[1], ) else: body.metric_aggs( name=f"{os_agg[0]}_{field.os_field_name}", func=os_agg[0], field=field.aggregatable_os_field_name, ) elif os_agg == "mode": # TODO for dropna=False, Check If field is timestamp or boolean or numeric, # then use missing parameter for terms aggregation. body.terms_aggs( name=f"{os_agg}_{field.os_field_name}", func="terms", field=field.aggregatable_os_field_name, os_size=os_mode_size, ) else: body.metric_aggs( name=f"{os_agg}_{field.os_field_name}", func=os_agg, field=field.aggregatable_os_field_name, ) response = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body() ) """ Results are like (for 'sum', 'min') AvgTicketPrice DistanceKilometers DistanceMiles FlightDelayMin sum 8.204365e+06 9.261629e+07 5.754909e+07 618150 min 1.000205e+02 0.000000e+00 0.000000e+00 0 """ return self._unpack_metric_aggs( fields=fields, os_aggs=os_aggs, pd_aggs=pd_aggs, response=response, numeric_only=numeric_only, is_dataframe_agg=is_dataframe_agg, percentiles=percentiles, ) def _terms_aggs( self, query_compiler: "QueryCompiler", func: str, os_size: int ) -> pd.Series: """ Parameters ---------- os_size: int, default None Parameter used by Series.value_counts() Returns ------- pandas.Series Series containing results of `func` applied to the field_name(s) """ query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) # Get just aggregatable field_names aggregatable_field_names = query_compiler._mappings.aggregatable_field_names() body = Query(query_params.query) for field in aggregatable_field_names.keys(): body.terms_aggs(field, func, field, os_size=os_size) response = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body() ) results = {} for key in aggregatable_field_names.keys(): # key is aggregatable field, value is label # e.g. key=category.keyword, value=category for bucket in response["aggregations"][key]["buckets"]: results[bucket["key"]] = bucket["doc_count"] try: # get first value in dict (key is .keyword) name: Optional[str] = list(aggregatable_field_names.values())[0] except IndexError: name = None return build_pd_series(results, name=name) def _hist_aggs( self, query_compiler: "QueryCompiler", num_bins: int ) -> Tuple[pd.DataFrame, pd.DataFrame]: # Get histogram bins and weights for numeric field_names query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) numeric_source_fields = query_compiler._mappings.numeric_source_fields() body = Query(query_params.query) results = self._metric_aggs(query_compiler, ["min", "max"], numeric_only=True) min_aggs = {} max_aggs = {} for field, (min_agg, max_agg) in results.items(): min_aggs[field] = min_agg max_aggs[field] = max_agg for field in numeric_source_fields: body.hist_aggs(field, field, min_aggs[field], max_aggs[field], num_bins) response = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body() ) # results are like # "aggregations" : { # "DistanceKilometers" : { # "buckets" : [ # { # "key" : 0.0, # "doc_count" : 2956 # }, # { # "key" : 1988.1482421875, # "doc_count" : 768 # }, # ... bins: Dict[str, List[int]] = {} weights: Dict[str, List[int]] = {} # There is one more bin that weights # len(bins) = len(weights) + 1 # bins = [ 0. 36. 72. 108. 144. 180. 216. 252. 288. 324. 360.] # len(bins) == 11 # weights = [10066., 263., 386., 264., 273., 390., 324., 438., 261., 394.] # len(weights) == 10 # ES returns # weights = [10066., 263., 386., 264., 273., 390., 324., 438., 261., 252., 142.] # So sum last 2 buckets for field in numeric_source_fields: # in case of series let plotting.oml_hist_series thrown an exception if not response.get("aggregations"): continue # in case of dataframe, throw warning that field is excluded if not response["aggregations"].get(field): warnings.warn( f"{field} has no meaningful histogram interval and will be excluded. " f"All values 0.", UserWarning, ) continue buckets = response["aggregations"][field]["buckets"] bins[field] = [] weights[field] = [] for bucket in buckets: bins[field].append(bucket["key"]) if bucket == buckets[-1]: weights[field][-1] += bucket["doc_count"] else: weights[field].append(bucket["doc_count"]) df_bins = pd.DataFrame(data=bins) df_weights = pd.DataFrame(data=weights) return df_bins, df_weights def _unpack_metric_aggs( self, fields: List["Field"], os_aggs: Union[List[str], List[Tuple[str, List[float]]]], pd_aggs: List[str], response: Dict[str, Any], numeric_only: Optional[bool], percentiles: Optional[Sequence[float]] = None, is_dataframe_agg: bool = False, is_groupby: bool = False, ) -> Dict[str, List[Any]]: """ This method unpacks metric aggregations JSON response. This can be called either directly on an aggs query or on an individual bucket within a composite aggregation. Parameters ---------- fields: a list of Field Mappings os_aggs: Opensearch_py_ml Equivalent of aggs pd_aggs: a list of aggs response: a dict containing response from Opensearch numeric_only: return either numeric values or NaN/NaT is_dataframe_agg: - True then aggregation is called from dataframe - False then aggregation is called from series percentiles: List of percentiles when 'quantile' agg is called. Otherwise it is None Returns ------- a dictionary on which agg caluculations are done. """ results: Dict[str, Any] = {} percentile_values: List[float] = [] agg_value: Any for field in fields: values = [] for os_agg, pd_agg in zip(os_aggs, pd_aggs): # is_dataframe_agg is used to differentiate agg() and an aggregation called through .mean() # If the field and agg aren't compatible we add a NaN/NaT for agg # If the field and agg aren't compatible we don't add NaN/NaT for an aggregation called through .mean() if not field.is_os_agg_compatible(os_agg): if is_dataframe_agg and not numeric_only: values.append(field.nan_value) elif not is_dataframe_agg and numeric_only is False: values.append(field.nan_value) # Explicit condition for mad to add NaN because it doesn't support bool elif is_dataframe_agg and numeric_only: if pd_agg == "mad": values.append(field.nan_value) continue if isinstance(os_agg, tuple): agg_value = response["aggregations"][ f"{os_agg[0]}_{field.os_field_name}" ] # Pull multiple values from 'percentiles' result. if os_agg[0] == "percentiles": agg_value = agg_value["values"] # Returns dictionary if pd_agg == "median": agg_value = agg_value["50.0"] # Currently Pandas does the same # If we call quantile it returns the same result as of median. elif ( pd_agg == "quantile" and is_dataframe_agg and not is_groupby ): agg_value = agg_value["50.0"] else: # Maintain order of percentiles if percentiles: percentile_values = [ agg_value[str(i)] for i in percentiles ] if not percentile_values and pd_agg not in ("quantile", "median"): agg_value = agg_value[os_agg[1]] # Need to convert 'Population' stddev and variance # from Opensearch into 'Sample' stddev and variance # which is what pandas uses. if os_agg[1] in ("std_deviation", "variance"): # Neither transformation works with count <=1 count = response["aggregations"][ f"{os_agg[0]}_{field.os_field_name}" ]["count"] # All of the below calculations result in NaN if count<=1 if count <= 1: agg_value = np.NaN elif os_agg[1] == "std_deviation": agg_value *= count / (count - 1.0) else: # os_agg[1] == "variance" # sample_std=\sqrt{\frac{1}{N-1}\sum_{i=1}^N(x_i-\bar{x})^2} # population_std=\sqrt{\frac{1}{N}\sum_{i=1}^N(x_i-\bar{x})^2} # sample_std=\sqrt{\frac{N}{N-1}population_std} agg_value = np.sqrt( (count / (count - 1.0)) * agg_value * agg_value ) elif os_agg == "mode": # For terms aggregation buckets are returned # agg_value will be of type list agg_value = response["aggregations"][ f"{os_agg}_{field.os_field_name}" ]["buckets"] else: agg_value = response["aggregations"][ f"{os_agg}_{field.os_field_name}" ]["value"] if isinstance(agg_value, list): # include top-terms in the result. if not agg_value: # If the all the documents for a field are empty agg_value = [field.nan_value] else: max_doc_count = agg_value[0]["doc_count"] # We need only keys which are equal to max_doc_count # lesser values are ignored agg_value = [ item["key"] for item in agg_value if item["doc_count"] == max_doc_count ] # Maintain datatype by default because pandas does the same # text are returned as-is if field.is_bool or field.is_numeric: agg_value = [ field.np_dtype.type(value) for value in agg_value ] # Null usually means there were no results. if not isinstance(agg_value, (list, dict)) and ( agg_value is None or np.isnan(agg_value) ): if is_dataframe_agg and not numeric_only: agg_value = np.NaN elif not is_dataframe_agg and numeric_only is False: agg_value = np.NaN # Cardinality is always either NaN or integer. elif pd_agg in ("nunique", "count"): agg_value = ( int(agg_value) if isinstance(agg_value, (int, float)) else np.NaN ) # If this is a non-null timestamp field convert to a pd.Timestamp() elif field.is_timestamp: if isinstance(agg_value, list): # convert to timestamp results for mode agg_value = [ opensearch_date_to_pandas_date(value, field.os_date_format) for value in agg_value ] elif percentile_values: percentile_values = [ opensearch_date_to_pandas_date(value, field.os_date_format) for value in percentile_values ] else: assert not isinstance(agg_value, dict) agg_value = opensearch_date_to_pandas_date( agg_value, field.os_date_format ) # If numeric_only is False | None then maintain column datatype elif not numeric_only and pd_agg != "quantile": # we're only converting to bool for lossless aggs like min, max, and median. if pd_agg in {"max", "min", "median", "sum", "mode"}: # 'sum' isn't representable with bool, use int64 if pd_agg == "sum" and field.is_bool: agg_value = np.int64(agg_value) # type: ignore else: agg_value = field.np_dtype.type(agg_value) if not percentile_values: values.append(agg_value) # If numeric_only is True and We only have a NaN type field then we check for empty. if values: results[field.column] = values if len(values) > 1 else values[0] # This only runs when df.quantile() or series.quantile() or # quantile from groupby is called if percentile_values: results[f"{field.column}"] = percentile_values return results def quantile( self, query_compiler: "QueryCompiler", pd_aggs: List[str], quantiles: Union[int, float, List[int], List[float]], is_dataframe: bool = True, numeric_only: Optional[bool] = True, ) -> Union[pd.DataFrame, pd.Series]: percentiles = [ quantile_to_percentile(x) for x in ( (quantiles,) if not isinstance(quantiles, (list, tuple)) else quantiles ) ] result = self._metric_aggs( query_compiler, pd_aggs=pd_aggs, percentiles=percentiles, is_dataframe_agg=False, numeric_only=numeric_only, ) df = pd.DataFrame( result, index=[i / 100 for i in percentiles], columns=result.keys(), dtype=(np.float64 if numeric_only else None), ) # Display Output same as pandas does if isinstance(quantiles, float): return df.squeeze() else: return df if is_dataframe else df.transpose().iloc[0] def unique(self, query_compiler: "QueryCompiler") -> pd.Series: query_params, _ = self._resolve_tasks(query_compiler) body = Query(query_params.query) fields = query_compiler._mappings.all_source_fields() assert len(fields) == 1 # Unique is only for opensearch_py_ml.Series field = fields[0] bucket_key = f"unique_{field.column}" body.composite_agg_bucket_terms( name=bucket_key, field=field.aggregatable_os_field_name, ) # Composite aggregation body.composite_agg_start(size=DEFAULT_PAGINATION_SIZE, name="unique_buckets") unique_buckets: List[Any] = sum( self.bucket_generator(query_compiler, body, agg_name="unique_buckets"), [] # type: ignore ) return np.array( [bucket["key"][bucket_key] for bucket in unique_buckets], dtype=field.pd_dtype, ) def aggs_groupby( self, query_compiler: "QueryCompiler", by: List[str], pd_aggs: List[str], dropna: bool = True, quantiles: Optional[Union[int, float, List[int], List[float]]] = None, is_dataframe_agg: bool = False, numeric_only: Optional[bool] = True, ) -> pd.DataFrame: """ This method is used to construct groupby aggregation dataframe Parameters ---------- query_compiler: A Query compiler by: a list of columns on which groupby operations have to be performed pd_aggs: a list of aggregations to be performed dropna: Drop None values if True. TODO Not yet implemented is_dataframe_agg: Know if groupby with aggregation or single agg is called. numeric_only: return either numeric values or NaN/NaT quantiles: List of quantiles when 'quantile' agg is called. Otherwise it is None Returns ------- A dataframe which consists groupby data """ query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) by_fields, agg_fields = query_compiler._mappings.groupby_source_fields(by=by) # Used defaultdict to avoid initialization of columns with lists results: Dict[Any, List[Any]] = defaultdict(list) if numeric_only: agg_fields = [ field for field in agg_fields if (field.is_numeric or field.is_bool) ] body = Query(query_params.query) # To return for creating multi-index on columns headers = [agg_field.column for agg_field in agg_fields] percentiles: Optional[List[float]] = None len_percentiles: int = 0 if quantiles: percentiles = [ quantile_to_percentile(x) for x in ( (quantiles,) if not isinstance(quantiles, (list, tuple)) else quantiles ) ] len_percentiles = len(percentiles) # Convert pandas aggs to ES equivalent os_aggs = self._map_pd_aggs_to_os_aggs(pd_aggs=pd_aggs, percentiles=percentiles) # Construct Query for by_field in by_fields: if by_field.aggregatable_os_field_name is None: raise ValueError( f"Cannot use {by_field.column!r} with groupby() because " f"it has no aggregatable fields in Opensearch" ) # groupby fields will be term aggregations body.composite_agg_bucket_terms( name=f"groupby_{by_field.column}", field=by_field.aggregatable_os_field_name, ) for agg_field in agg_fields: for os_agg in os_aggs: # Skip if the field isn't compatible or if the agg is # 'value_count' as this value is pulled from bucket.doc_count. if not agg_field.is_os_agg_compatible(os_agg): continue # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call if isinstance(os_agg, tuple): if os_agg[0] == "percentiles": body.percentile_agg( name=f"{os_agg[0]}_{agg_field.os_field_name}", field=agg_field.os_field_name, percents=os_agg[1], ) else: body.metric_aggs( f"{os_agg[0]}_{agg_field.os_field_name}", os_agg[0], agg_field.aggregatable_os_field_name, ) else: body.metric_aggs( f"{os_agg}_{agg_field.os_field_name}", os_agg, agg_field.aggregatable_os_field_name, ) # Composite aggregation body.composite_agg_start( size=DEFAULT_PAGINATION_SIZE, name="groupby_buckets", dropna=dropna ) for buckets in self.bucket_generator( query_compiler, body, agg_name="groupby_buckets" ): # We recieve response row-wise for bucket in buckets: # groupby columns are added to result same way they are returned for by_field in by_fields: bucket_key = bucket["key"][f"groupby_{by_field.column}"] # Datetimes always come back as integers, convert to pd.Timestamp() if by_field.is_timestamp and isinstance(bucket_key, int): bucket_key = pd.to_datetime(bucket_key, unit="ms") if pd_aggs == ["quantile"] and len_percentiles > 1: bucket_key = [bucket_key] * len_percentiles results[by_field.column].extend( bucket_key if isinstance(bucket_key, list) else [bucket_key] ) agg_calculation = self._unpack_metric_aggs( fields=agg_fields, os_aggs=os_aggs, pd_aggs=pd_aggs, response={"aggregations": bucket}, numeric_only=numeric_only, percentiles=percentiles, # We set 'True' here because we want the value # unpacking to always be in 'dataframe' mode. is_dataframe_agg=True, is_groupby=True, ) # to construct index with quantiles if pd_aggs == ["quantile"] and percentiles and len_percentiles > 1: results[None].extend([i / 100 for i in percentiles]) # Process the calculated agg values to response for key, value in agg_calculation.items(): if not isinstance(value, list): results[key].append(value) continue elif isinstance(value, list) and pd_aggs == ["quantile"]: results[f"{key}_{pd_aggs[0]}"].extend(value) else: for pd_agg, val in zip(pd_aggs, value): results[f"{key}_{pd_agg}"].append(val) if pd_aggs == ["quantile"] and len_percentiles > 1: # by never holds None by default, we make an exception # here to maintain output same as pandas, also mypy complains by = by + [None] # type: ignore agg_df = pd.DataFrame(results).set_index(by).sort_index() if is_dataframe_agg: # Convert header columns to MultiIndex agg_df.columns = pd.MultiIndex.from_product([headers, pd_aggs]) else: # Convert header columns to Index agg_df.columns = pd.Index(headers) return agg_df @staticmethod def bucket_generator( query_compiler: "QueryCompiler", body: "Query", agg_name: str ) -> Generator[Sequence[Dict[str, Any]], None, Sequence[Dict[str, Any]]]: """ This can be used for all groupby operations. e.g. "aggregations": { "groupby_buckets": { "after_key": {"total_quantity": 8}, "buckets": [ { "key": {"total_quantity": 1}, "doc_count": 87, "taxful_total_price_avg": {"value": 48.035978536496216}, } ], } } Returns ------- A generator which initially yields the bucket If after_key is found, use it to fetch the next set of buckets. """ while True: res = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body(), ) # Pagination Logic composite_buckets: Dict[str, Any] = res["aggregations"][agg_name] after_key: Optional[Dict[str, Any]] = composite_buckets.get( "after_key", None ) buckets: Sequence[Dict[str, Any]] = composite_buckets["buckets"] if after_key: # yield the bucket which contains the result yield buckets body.composite_agg_after_key( name=agg_name, after_key=after_key, ) else: return buckets @staticmethod def _map_pd_aggs_to_os_aggs( pd_aggs: List[str], percentiles: Optional[List[float]] = None ) -> Union[List[str], List[Tuple[str, List[float]]]]: """ Args: pd_aggs - list of pandas aggs (e.g. ['mad', 'min', 'std'] etc.) percentiles - list of percentiles for 'quantile' agg Returns: oml_aggs - list of corresponding os_aggs (e.g. ['median_absolute_deviation', 'min', 'std'] etc.) Pandas supports a lot of options here, and these options generally work on text and numerics in pandas. Opensearch has metric aggs and terms aggs so will have different behaviour. Pandas aggs that return field_names (as opposed to transformed rows): all any count mad max mean median min mode quantile rank sem skew sum std var nunique """ # pd aggs that will be mapped to os aggs # that can use 'extended_stats'. extended_stats_pd_aggs = {"mean", "min", "max", "sum", "var", "std"} extended_stats_os_aggs = {"avg", "min", "max", "sum"} extended_stats_calls = 0 os_aggs: List[Any] = [] for pd_agg in pd_aggs: if pd_agg in extended_stats_pd_aggs: extended_stats_calls += 1 # Aggs that are 'extended_stats' compatible if pd_agg == "count": os_aggs.append("value_count") elif pd_agg == "max": os_aggs.append("max") elif pd_agg == "min": os_aggs.append("min") elif pd_agg == "mean": os_aggs.append("avg") elif pd_agg == "sum": os_aggs.append("sum") elif pd_agg == "std": os_aggs.append(("extended_stats", "std_deviation")) elif pd_agg == "var": os_aggs.append(("extended_stats", "variance")) # Aggs that aren't 'extended_stats' compatible elif pd_agg == "nunique": os_aggs.append("cardinality") elif pd_agg == "mad": os_aggs.append("median_absolute_deviation") elif pd_agg == "median": os_aggs.append(("percentiles", (50.0,))) elif pd_agg == "quantile": # None when 'quantile' is called in df.agg[...] # Behaves same as median because pandas does the same. if percentiles is not None: os_aggs.append(("percentiles", tuple(percentiles))) else: os_aggs.append(("percentiles", (50.0,))) elif pd_agg == "mode": if len(pd_aggs) != 1: raise NotImplementedError( "Currently mode is not supported in df.agg(...). Try df.mode()" ) else: os_aggs.append("mode") # Not implemented elif pd_agg == "rank": # TODO raise NotImplementedError(pd_agg, " not currently implemented") elif pd_agg == "sem": # TODO raise NotImplementedError(pd_agg, " not currently implemented") else: raise NotImplementedError(pd_agg, " not currently implemented") # If two aggs compatible with 'extended_stats' is called we can # piggy-back on that single aggregation. if extended_stats_calls >= 2: os_aggs = [ ("extended_stats", os_agg) if os_agg in extended_stats_os_aggs else os_agg for os_agg in os_aggs ] return os_aggs def filter( self, query_compiler: "QueryCompiler", items: Optional[List[str]] = None, like: Optional[str] = None, regex: Optional[str] = None, ) -> None: # This function is only called for axis='index', # DataFrame.filter(..., axis="columns") calls .drop() if items is not None: self.filter_index_values( query_compiler, field=query_compiler.index.os_index_field, items=items ) return elif like is not None: arg_name = "like" else: assert regex is not None arg_name = "regex" raise NotImplementedError( f".filter({arg_name}='...', axis='index') is currently not supported due " f"to substring and regex operations not being available for Opensearch document IDs." ) def describe(self, query_compiler: "QueryCompiler") -> pd.DataFrame: query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) df1 = self.aggs( query_compiler=query_compiler, pd_aggs=["count", "mean", "std", "min", "max"], numeric_only=True, ) df2 = self.quantile( query_compiler=query_compiler, pd_aggs=["quantile"], quantiles=[0.25, 0.5, 0.75], is_dataframe=True, numeric_only=True, ) # Convert [.25,.5,.75] to ["25%", "50%", "75%"] df2 = df2.set_index([["25%", "50%", "75%"]]) return pd.concat([df1, df2]).reindex( ["count", "mean", "std", "min", "25%", "50%", "75%", "max"] ) def to_pandas( self, query_compiler: "QueryCompiler", show_progress: bool = False ) -> pd.DataFrame: df_list: List[pd.DataFrame] = [] i = 0 for df in self.search_yield_pandas_dataframes(query_compiler=query_compiler): if show_progress: i = i + df.shape[0] if i % DEFAULT_PROGRESS_REPORTING_NUM_ROWS == 0: print(f"{datetime.now()}: read {i} rows") df_list.append(df) if show_progress: print(f"{datetime.now()}: read {i} rows") # pd.concat() can't handle an empty list # because there aren't defined columns. if not df_list: return query_compiler._empty_pd_ef() return pd.concat(df_list) def to_csv( self, query_compiler: "QueryCompiler", show_progress: bool = False, **kwargs: Union[bool, str], ) -> Optional[str]: return self.to_pandas( # type: ignore[no-any-return] query_compiler=query_compiler, show_progress=show_progress ).to_csv(**kwargs) def search_yield_pandas_dataframes( self, query_compiler: "QueryCompiler", sort_index: Optional["str"] = "_doc" ) -> Generator["pd.DataFrame", None, None]: query_params, post_processing = self._resolve_tasks(query_compiler) result_size, sort_params = Operations._query_params_to_size_and_sort( query_params ) script_fields = query_params.script_fields query = Query(query_params.query) body = query.to_search_body() if script_fields is not None: body["script_fields"] = script_fields # Only return requested field_names and add them to body _source = query_compiler.get_field_names(include_scripted_fields=False) body["_source"] = _source if _source else False if sort_params: body["sort"] = [sort_params] # i = 1 for hits in _search_yield_hits( query_compiler=query_compiler, body=body, max_number_of_hits=result_size, sort_index=sort_index, ): df = query_compiler._os_results_to_pandas(hits) df = self._apply_df_post_processing(df, post_processing) # i += 1 yield df def index_count(self, query_compiler: "QueryCompiler", field: str) -> int: # field is the index field so count values query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) # Size is dictated by operations if size is not None: # TODO - this is not necessarily valid as the field may not exist in ALL these docs return size body = Query(query_params.query) body.exists(field, must=True) count: int = query_compiler._client.count( index=query_compiler._index_pattern, body=body.to_count_body() )["count"] return count def _validate_index_operation( self, query_compiler: "QueryCompiler", items: List[str] ) -> RESOLVED_TASK_TYPE: if not isinstance(items, list): raise TypeError(f"list item required - not {type(items)}") # field is the index field so count values query_params, post_processing = self._resolve_tasks(query_compiler) size = self._size(query_params, post_processing) # Size is dictated by operations if size is not None: raise NotImplementedError( f"Can not count field matches if size is set {size}" ) return query_params, post_processing def index_matches_count( self, query_compiler: "QueryCompiler", field: str, items: List[Any] ) -> int: query_params, post_processing = self._validate_index_operation( query_compiler, items ) body = Query(query_params.query) if field == Index.ID_INDEX_FIELD: body.ids(items, must=True) else: body.terms(field, items, must=True) count: int = query_compiler._client.count( index=query_compiler._index_pattern, body=body.to_count_body() )["count"] return count def drop_index_values( self, query_compiler: "QueryCompiler", field: str, items: List[str] ) -> None: self._validate_index_operation(query_compiler, items) # Putting boolean queries together # i = 10 # not i = 20 # _id in [1,2,3] # _id not in [1,2,3] # a in ['a','b','c'] # b not in ['a','b','c'] # For now use term queries task: Union["QueryIdsTask", "QueryTermsTask"] if field == Index.ID_INDEX_FIELD: task = QueryIdsTask(False, items) else: task = QueryTermsTask(False, field, items) self._tasks.append(task) def filter_index_values( self, query_compiler: "QueryCompiler", field: str, items: List[str] ) -> None: # Basically .drop_index_values() except with must=True on tasks. self._validate_index_operation(query_compiler, items) task: Union["QueryIdsTask", "QueryTermsTask"] if field == Index.ID_INDEX_FIELD: task = QueryIdsTask(True, items, sort_index_by_ids=True) else: task = QueryTermsTask(True, field, items) self._tasks.append(task) @staticmethod def _query_params_to_size_and_sort( query_params: QueryParams, ) -> Tuple[Optional[int], Optional[Dict[str, str]]]: sort_params = None if query_params.sort_field and query_params.sort_order: sort_params = { query_params.sort_field: SortOrder.to_string(query_params.sort_order) } size = query_params.size return size, sort_params @staticmethod def _count_post_processing( post_processing: List["PostProcessingAction"], ) -> Optional[int]: size = None for action in post_processing: if isinstance(action, SizeTask): if size is None or action.size() < size: size = action.size() return size @staticmethod def _apply_df_post_processing( df: "pd.DataFrame", post_processing: List["PostProcessingAction"] ) -> pd.DataFrame: for action in post_processing: df = action.resolve_action(df) return df def _resolve_tasks(self, query_compiler: "QueryCompiler") -> RESOLVED_TASK_TYPE: # We now try and combine all tasks into an Opensearch query # Some operations can be simply combined into a single query # other operations require pre-queries and then combinations # other operations require in-core post-processing of results query_params = QueryParams() post_processing: List["PostProcessingAction"] = [] for task in self._tasks: query_params, post_processing = task.resolve_task( query_params, post_processing, query_compiler ) if self._arithmetic_op_fields_task is not None: ( query_params, post_processing, ) = self._arithmetic_op_fields_task.resolve_task( query_params, post_processing, query_compiler ) return query_params, post_processing def _size( self, query_params: "QueryParams", post_processing: List["PostProcessingAction"] ) -> Optional[int]: # Shrink wrap code around checking if size parameter is set size = query_params.size pp_size = self._count_post_processing(post_processing) if pp_size is not None: if size is not None: size = min(size, pp_size) else: size = pp_size # This can return None return size def os_info(self, query_compiler: "QueryCompiler", buf: TextIO) -> None: buf.write("Operations:\n") buf.write(f" tasks: {self._tasks}\n") query_params, post_processing = self._resolve_tasks(query_compiler) size, sort_params = Operations._query_params_to_size_and_sort(query_params) _source = query_compiler._mappings.get_field_names() script_fields = query_params.script_fields query = Query(query_params.query) body = query.to_search_body() if script_fields is not None: body["script_fields"] = script_fields buf.write(f" size: {size}\n") buf.write(f" sort_params: {sort_params}\n") buf.write(f" _source: {_source}\n") buf.write(f" body: {body}\n") buf.write(f" post_processing: {post_processing}\n") def update_query(self, boolean_filter: "BooleanFilter") -> None: task = BooleanFilterTask(boolean_filter) self._tasks.append(task) def quantile_to_percentile(quantile: Union[int, float]) -> float: # To verify if quantile range falls between 0 to 1 if isinstance(quantile, (int, float)): quantile = float(quantile) if quantile > 1 or quantile < 0: raise ValueError( f"quantile should be in range of 0 and 1, given {quantile}" ) else: raise TypeError("quantile should be of type int or float") # quantile * 100 = percentile # return float(...) because min(1.0) gives 1 return float(min(100, max(0, quantile * 100))) def _search_yield_hits( query_compiler: "QueryCompiler", body: Dict[str, Any], max_number_of_hits: Optional[int], sort_index: Optional[str] = "_doc", ) -> Generator[List[Dict[str, Any]], None, None]: """ This is a generator used to initialize point in time API and query the search API and return generator which yields batches of hits as they come in. No empty batches will be yielded, if there are no hits then no batches will be yielded instead. Parameters ---------- query_compiler: An instance of query_compiler body: body for search API max_number_of_hits: Optional[int] Maximum number of documents to yield, set to 'None' to yield all documents. Examples -------- >>> results = list(search_yield_hits(query_compiler, body, 2)) # doctest: +SKIP [[{'_index': 'flights', '_type': '_doc', '_id': '0', '_score': None, '_source': {...}, 'sort': [...]}, {'_index': 'flights', '_type': '_doc', '_id': '1', '_score': None, '_source': {...}, 'sort': [...]}]] """ # No documents, no reason to send a search. if max_number_of_hits == 0: return # Make a copy of 'body' to avoid mutating it outside this function. body = body.copy() # Use the default search size body.setdefault("size", DEFAULT_SEARCH_SIZE) client = query_compiler._client hits_yielded = 0 # Track the total number of hits yielded. # Pagination with 'search_after' must have a 'sort' setting. # Using '_doc:asc' is the most efficient as reads documents # in the order that they're written on disk in Lucene. body.setdefault("sort", [{sort_index: "asc"}]) # Improves performance by not tracking # of hits. We only # care about the hit itself for these queries. body.setdefault("track_total_hits", False) # TODO: re-implement point in time search after supporting in OpenSearch 2.3 while max_number_of_hits is None or hits_yielded < max_number_of_hits: resp = client.search(body=body, index=query_compiler._index_pattern) hits: List[Dict[str, Any]] = resp["hits"]["hits"] # If we didn't receive any hits it means we've reached the end. if not hits: break # Calculate which hits should be yielded from this batch if max_number_of_hits is None: hits_to_yield = len(hits) else: hits_to_yield = min(len(hits), max_number_of_hits - hits_yielded) # Yield the hits we need to and then track the total number. # Never yield an empty list as that makes things simpler for # downstream consumers. if hits and hits_to_yield > 0: yield hits[:hits_to_yield] hits_yielded += hits_to_yield # Set the 'search_after' for the next request # to be the last sort value for this set of hits. body["search_after"] = hits[-1]["sort"]